簡易檢索 / 詳目顯示

研究生: 陳惠菁
Huei-jing Chen
論文名稱: 具新型頻率預測及相位補償之數位式鎖相迴路
A Digital Phase-Locked Loop with Novel Frequency Estimation and Phase Error Compensation
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 陳筱青
Hsiao-Chin Chen
彭盛裕
Sheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: 全數位式鎖相迴路頻率偵測相位誤差補償數位控制振盪器
外文關鍵詞: all-digital phase-locked loop, frequency estimation, phase error compensation, digitally controlled oscillator
相關次數: 點閱:360下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將提出具有頻率偵測及相位頻率誤差補償功能的演算法。首先,我們提出了一個振盪週期對應控制碼呈高線性度的新型數位控制振盪器(DCO)架構。其中頻率偵測的機制是利用計算此數位控制振盪器其最高頻或最低頻經過除頻器後產生的回授訊號Fback和參考頻率Fref間的週期差,以產生數位控制振盪器的預測控制碼。其後的每個參考頻率週期都將進行相位誤差補償機制,抵銷參考頻率Fref和除頻後的輸出頻率Fback間的相差以解決鎖相迴路中常見的相位誤差累積問題。並將相位頻率補償機制應用在全數位式鎖相迴路的追鎖過程。待系統鎖定後再藉由拓展控制碼位元數,以增加鎖定後頻率的穩定性。

    本論文的晶片是採用TSMC 0.18 um 1P6M CMOS製程來實現,除了高解析度的數位控制振盪器需要採用Full-custom設計流程完成外,其餘電路完全可由Cell-Based設計流程來完成。系統操作頻段為598 MHz至1.4 GHz,數位控制振盪器的解析度可達0.34 ps ,操作在1.02 GHz下最大功率消耗為28 mW 、晶片面積大約為1.23 mm2 。


    This thesis presents a frequency estimation method and a phase-frequency compensation mechanism for an all digital phase-locked loop (ADPLL). First, a novel digital-controlled oscillator (DCO) was designed. This DCO possesses good linear relation between control codes and oscillating period. The frequency estimation method generates the predicted control code by calculating the cycle time difference between the reference clock and the derived feedback signal from the DCO. After that, the phase error compensation mechanism is activated to resolve the problem of phase error accumulation. Next, the phased-frequency compensation mechanism is used in the tracking mode of the ADPLL. On the other hand, after the system is locked, the control code is extended to enhance the frequency stability.
    The proposed ADPLL chip was fabricated in TSMC 0.18um 1P6M CMOS process. The DCO is implemented by the full-custom design flow. The other part of the ADPLL is realized by the cell-based design flow. The output frequency range is from 598 MHz to 1.4 GHz with 1-MHz tuning step. The resolution of the DCO is 0.34 ps. The maximum power consumption is 28 mW, and the chip size is 1.23 mm2.

    中文摘要 I Abstract IV 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅹ 第一章 緒論 1 1-1 研究動機 1 1-2 論文規劃 3 第二章 鎖相迴路介紹與系統應用 4 2-1 類比式鎖相迴路 4 2-2 數位式鎖相迴路 5 2-3 全數位式鎖相迴路 6 2-4 以頻率偵測演算法達2個週期鎖定之全數位式鎖相迴路 8 2-5 系統應用 10 第三章 具頻率預測及相位補償之數位式鎖相迴路系統架構介紹與模擬 12 3-1 數位控制振盪器 12 3-1.1 數位控制振盪器電路架構 12 3-1.2 後模擬結果 14 3-2 系統架構 17 3.3 頻率預測器 19 3-3.1 頻率預測機制 19 3-3.2 頻率預測器電路架構 21 3-4 除頻器 22 3-4.1 除頻器架構 22 3-4.2 雙模數Prescaler 24 3-4.3 前模擬結果 26 3-4.4 後模擬結果 27 3-5 相位頻率偵測器 29 3-5.1 電路架構與原理 29 3-5.2 前模擬結果 31 3-5.3 後模擬結果 31 3-6 相位補償器 32 3-6.1 相位誤差累積問題 33 3-6.2 相位誤差補償機制 34 3-6.3 藉由相位誤差補償機制調整數位控制碼 35 3-6.4 相位誤差補償器電路架構 36 3-7 控制碼控制器 38 3-7.1 工作原理 38 3-7.2 後模擬結果 41 第四章 晶片佈局與量測 42 4-1 設計流程 42 4-2 晶片佈局規劃 44 4-3 量測考量 45 4-4 量測結果 47 4-4.1 Clock period jitter之量測結果 47 4-4.2 鎖定過程控制碼之量測結果 51 4-4.3 頻譜與相位雜訊之量測結果 53 第五章 結論與未來展望 57 5-1 結論 57 5-2 未來展望 60 參考文獻 61

    [1] C.-C. Wang, A digital frequency synthesizer HDL generator for SOC design. National Chiao-Tung University, M.S. Thesis, 2000.
    [2] R.-E. Best, Phase Locked Loops: Design, Simulation, and Application. 3rd Edition. Singapore McGraw-Hill Inc., 1993.
    [3] 廖煥森, Low-Power Phase-Locked Loop Design. M.S. Thesis, Tamkung University, 1999.
    [4] C.-C. Cheng, The analysis and design of all digital phase-locked loop(ADPLL). National Chiao-Tung University, M.S. Thesis, 2001.
    [5] Chia-Tsun Wu, Wen-Chung Shen, Wei Wang, and An-Yeu Wu, “A Two-Cycle Lock-In Time ADPLL Design Based
    on a Frequency Estimation Algorithm,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 6, June 2010.
    [6] A. Zolfaghari and B. Razavi, “A low-power 2.4-GHz transmitter/receiver CMOS IC ,” IEEE J. Solid-State Circuits, vol. 38, pp. 176-183, 2003.
    [7] Hua Geng, Member, IEEE, Dewei Xu, Member, IEEE, and Bin Wu, Fellow, IEEE,” A Novel Hardware-Based All-Digital Phase-Locked Loop Applied to Grid-Connected Power Converters,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS , vol. 58, no. 5, MAY 2011.
    [8] D. Sheng, C.-C. Chung, C.-Y. Lee, “An Ultra-Low-Power and Portable Digitally Controlled Oscillator for SoC Applications,” IEEE J. Circuits and Systems II: Exp. Briefs, vol. 54, pp. 954 – 958, 2007.
    [9] P.-L. Chen, C.-C. Chung, and C.-Y. Lee, “A portable digitally controlled oscillator using novel varactors,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, pp. 233–237, May 2005.
    [10] D. Sheng, C.-C. Chung, and C.-Y. Lee, “An all-digital phase-locked loop with high-resolution for SoC applications,” IEEE VLSI D.A.T., pp. 207–210, Apr. 2006.
    [11] T.-Y. Hsu, C.-C. Wang, and C.-Y. Lee, “Design and analysis of portable high-speed clock generator,” IEEE Trans. Circuits Syst. II, Analog Digit.Signal Process., vol. 48, no. 4, pp. 367–375, Apr. 2001.
    [12] T. Watanabe and S. Yamauchi, “An all-digital PLL for frequency multiplication by 4 to 1022 with seven-cycle lock time,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 198–204, Feb. 2003.
    [13] K.-J. Lee, S.-H. Jung, Y.-J. Kim, C. Kim, S. Kim, U.-R. Cho, C.-G. Kwak, and H.-G. Byun, “A digitally controlled oscillator for low jitter all digital phase locked loops,” in Proc. IEEE Asian Solid-State Circuit Conf., pp. 365–368, Nov. 2005.
    [14] P.-L. Chen, C.-C. Chung, J.-N. Yang, and C.-Y. Lee, “A clock generator with cascaded dynamic frequency counting loops for wide multiplication range applications,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1275-1285, Jun. 2006.
    [15] K .-H. Choi, J.-B. Shin, J.-Y. Sim, and H.-J. Pard, “An interpolation digitally controlled oscillator for a wide-range all-digital PLL,” IEEE Trans.Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 2055–2063, Sep. 2009.
    [16] Kuo-Hsing Cheng, Member, IEEE, Kai-Wei Hong, Chi-Hsiang Chen, and Jen-Chieh Liu, Student Member, IEEE, “A High Precision Fast Locking Arbitrary Duty Cycle Clock Synchronization Circuit, ” IEEE Trans.on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 7, July 2011.
    [17] 劉大維, 新型全數位式鎖相迴路之設計. 碩士論文, 淡江大學, 2002.
    [18] 高曜煌, 射頻鎖相迴路IC設計. 滄海書局, 2005.
    [19] 劉深淵, 楊清淵, 鎖相迴路. 滄海書局, 2006.

    無法下載圖示 全文公開日期 2018/01/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE