簡易檢索 / 詳目顯示

研究生: 周佳妤
Chia-shu Chao
論文名稱: 具均化突波技術之鎖相迴路及全數位化突發式時脈資料回復電路設計與實現
Design and Implementation of Spur-Averaging Technique in Phase-Locked Loop and All-Digital Burst-Mode Clock and Data Recovery Circuit
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 陳筱青
Hsiao-Chin Chen
楊湰頡
Rong-Jyi Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 81
中文關鍵詞: 閘控數位控制震盪器突發式時脈資料回復電路無參考時脈輸入三角積分調變器參考頻率干擾鎖相迴路
外文關鍵詞: gated digital control oscillator(GDCO), burst-mode CDR, reference-free, sigma-delta modulator(SDM), reference spur, Phase-locked loop(PLL)
相關次數: 點閱:311下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎖相迴路發展至今已有十多年歷史,大量文獻提出完整的架構來改善迴路穩定性、穩定時間、迴路頻寬,類比式鎖相迴路相較於數位式的好處為可實現高操作速度的目標,但抖動與參考頻率干擾高低仍是影響鎖相迴路好壞的關鍵,本論文即提出改善參考頻率干擾的新架構。在另一方面,突發式時脈資料回復電路為鎖相迴路的應用,擺脫傳統架構缺陷,無參考時脈訊號的輸入可降低參考訊號與資料之間的頻率誤差,雖全數位架構導致系統操作頻率有限,但優點為可實現完全模組化。
    論文中包含兩大部分,分別為利用三角積分調變器來降低參考頻率干擾之鎖相迴路與全數位化無參考時脈輸入之突發式時脈資料回復電路。首先第一部分鑒於系統操作速度的不斷提升,些微的抖動累積對系統皆會造成劇烈影響,如何有效地降低雜訊則成為論文第一部分的研究主軸。實現方法為利用三角積分調變器輸出特性為亂數資料但仍保持相同責任週期,當系統鎖定後,相位頻率偵測器經由多工器切換至改由觸發三角積分調變器之輸出,來達到均化參考頻率干擾之目標。晶片主體面積為0.62mmx0.74mm,功率消耗為31mW,系統鎖定頻率2.4GHz時所量測之參考頻率干擾為低於-58dBc@20MHz。論文第二部分,早期由鎖相迴路為基礎來實現突發式時脈資料回復電路雖可達到不差的效能,但仍存頻率誤差於鎖相迴路震盪器與閘控震盪器(Gated Oscillator)之間,故論文將傳統鎖相迴路的電路架構與文獻[35]進行改良,系統中採用一組數位閘控數位控制震盪器(Gated Digital Control Oscillator, GDCO),利用匹配的負載設計所得到的輸出頻率進行頻率與相位校正,頻率部分利用真實單相時脈正反器來實現頻率追鎖,因此可取代需消耗龐大晶片面積之傳統鎖相迴路架構,相位部分利用亞歷山大相位偵測器來提高校正的準確性。


    Many works have been reported recently in this field and have already enhanced the electrical performance including jitter, loop stability, settling time, and loop bandwidth. However, the jitter and reference spur become serious problems as the progress of the high-speed communication. Therefore, decreasing the reference spur in the charge pump (CP) or divider of the PLL is the main subject in most of the publications. In the first part of this thesis, this work adopts the characteristics of sigma-delta modulator (SDM), which outputs random data but still maintains the same duty cycle and the multiplexer switches clock signal of phase frequency detector (PFD) to trigger voltage level from SDM’s output after stabilizing the system. The PLL circuit has been fabricated in a 0.18um CMOS technology and the core area is 0.62mmx0.72mm. The power consumption is 31mW from a 1.8V supply and the measured reference spur is lower than -58dBc while reference clock input is 20MHz.
    In second part of this thesis, an all-digital reference-free burst-mode clock/data recovery (CDR) has been presented. Although a conventional PLL-based burst-mode CDR has good performance, it still has drawbacks of large chip area occupied by the PLL and the frequency error between PLL’s oscillator and matched gated oscillator. The ultimate goal of this thesis is designing a suitable loading of gated digital control oscillator (GDCO) as well as using oscillator’s frequency output (CK1 and CK2) to calibration frequency and phase, in addition, applying edge detector (ED) to accomplish reference-free and solve the problem of the asynchronous clock.

    摘 要 I Abstract II 目 錄 III 圖 目 錄 V 表 目 錄 VIII 第一章 簡介 - 1 - 1.1 動機 - 1 - 1.2 論文架構 - 3 - 第二章 鎖相迴路與應用電路 - 5 - 2.1 歷史簡介 - 5 - 2.2 鎖相迴路之基本工作原理 - 6 - 2.2.1簡單型之鎖相迴路 - 6 - 2.2.1.1相位偵測器簡介 - 7 - 2.2.1.2迴路濾波器簡介 - 9 - 2.2.1.3壓控振盪器簡介 - 10 - 2.2.1.4 除頻器簡介 - 13 - 2.2.2 電荷幫浦型之線性鎖相迴路 - 14 - 2.2.2.1相位頻率偵測器 - 14 - 2.2.2.2電荷幫浦 - 17 - 2.3 迴路分析 - 18 - 2.4 相位雜訊與參考頻率干擾 - 21 - 第三章 使用具有三角積分均化突波降低技術之2.4GHz鎖相迴路 - 24 - 3.1簡介與文獻比較 - 24 - 3.1.1雙迴路電荷幫浦 - 25 - 3.1.2多迴路電荷幫浦 - 26 - 3.1.3數位校正之電荷幫浦 - 27 - 3.1.4次取樣(Sub-sampling)相位偵測器與振幅限制之電荷幫浦 - 28 - 3.2系統架構 - 30 - 3.2.1 MASH 1-1三角積分調變器 - 32 - 3.2.2電路實現 - 34 - 3.2.2.1相位頻率偵測器 - 34 - 3.2.2.2電荷幫浦 - 35 - 3.2.2.3 壓控振盪器 - 36 - 3.2.2.4 除頻器 - 37 - 3.2.2.5 三角積分調變器 - 39 - 3.2.2.6 環形計數器 - 41 - 3.3 系統架構 - 42 - 3.4 系統參數設計 - 44 - 3.5 系統模擬結果 - 45 - 3.6 下線實作與量測結果 - 49 - 3.6.1設計流程 - 49 - 3.6.2量測環境 - 50 - 3.6.3印刷電路板製作 - 51 - 3.6.4量測結果 - 52 - 第四章 全數位無參考時脈之1.25 GHz突發式時脈與資料回復電路 - 57 - 4.1突發式時脈資料回復電路分類 - 58 - 4.1.1鎖相迴路為基礎之匹配閘控震盪器之突發式時脈資料回復電路(PLL-based matched gated oscillator burst-mode CDR Circuit) - 59 - 4.1.2 相位選取之突發式時脈資料回復電路(Phase-picking Burst-mode CDR Circuit) - 61 - 4.2 系統架構 - 63 - 4.3 電路實現 - 65 - 4.3.1 頻率判斷電路 - 65 - 4.3.2 相位偵測器 - 65 - 4.3.3 兩態計數器與三態計數器 - 66 - 4.3.4 閘控數位控制震盪器 - 67 - 4.4 電路模擬 - 69 - 4.5 結論 - 75 - 第五章 結論與未來研究 - 76 - 5.1 結論 - 76 - 5.1 未來研究 - 77 - 參考文獻 - 78 -

    [1]De Bellescize, H., “La reseption synchrone, ” Onde Electrique, vol. 11, pp. 230-240, June 1932.
    [2]A. Alvandpour, R. K. Krishnamurthy, D. Eckerbert, S. Apperson, B. Bloechel, and S. Borkar, “A 3.5GHz 32mW 150 nm multiphase clock generator for high-performance microprocessors,” in IEEE Int. Solid-State Circ. Conf. Dig Tech. papers, 2003, pp. 112-113, 489.
    [3]Thompson, M., “Low-latency, high-speed numerically controlled oscillator using progression-of-states technique,” IEEE J. Solid-State Circuits, vol. 27, pp. 113-117, Jan. 1992.
    [4]Lu, F., Samueli, H., Yuan, J., Svensson, C. m, “A 700-MHz 24-b pipelined accumulator in 1.2-μm CMOS for application as a numerically controlled oscillator,” IEEE J. Solid-State Circuits, vol. 28, pp. 878-886, Aug. 1993.
    [5]El-Amawy, A. A., Mirbod A, “An efficient software-controlled PLL for low-frequency application,” IEEE Transactions on Industrial Electronics, vol. 35, no. 2, May 1998.
    [6]B. Gilbert, “Current-mode Circuits From A Translinear Viewpoint: A Tutorial,” Chapter 2 in C. Toumazou, F. J. Lidgey and D. G. High (Eds) Analogue IC design: the current-mode approach, Peter Perigrinus Press, 1990.
    [7]P. Larrsson, “An offset-cancelled CMOS clock-recovery/demux with a half-rate linear detector phase detector for 2.5Gb/s optical communication,” Int. Solid-State Circuits Conf., pp. 74-75, 434, Feb. 2001.
    [8]Y. Koo, H. Huh, Y. Cho, J. Lee, J. Park, K. Lee, D. K. Jeong, and W. Kim, “ A fully integrated CMOS frequency synthesizer with charge-average charge pump and dual-path loop filter for PCS- and cellular-CDMA wireless systems,” IEEE J. Solid-State Circuits, vol. 37, pp. 536-543, May 202.
    [9]J. Craninckx and M. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 33, pp. 2054-2065, Dec. 1998.
    [10]T. C. Lee and B. Razavi, “ A stabilization technique for phase-locked frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 38, pp. 888-894, June. 2003.
    [11]Roland E. Best, Phase-Locked Loops, Design, Simulation, and Application, 6rd ed., McGraw-Hill, New York, 2007.
    [12]S. K. ENAM, ASAD A. ABIDI, “A 300-MHz CMOS Voltage-Controlled Ring Oscillator,” IEEE J. Solid-State Circuits, vol. 25, no. 1, Feb. 1990.
    [13]Jan Graninckx, M. Steyaert, “ Low noise voltage-controlled oscillators using enhanced LC tanks,” IEEE Trans. Circuits and Systems-11:Analog and Digital Signal Processing, vol. 42, pp. 794-804, Dec. 1995.
    [14]Tal, J., Whitaker, R. K, “Eliminating False Lock in Phase-Locked Loops,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-15, pp. 275-281, March 1979.
    [15]I. A. Young, J. K. Greason and K. L. Wong, “A PLL clock generator with 5 to 110 MHz of clock rang for microprocessors,” IEEE J. Solid-State Circuits, vol. 27, pp. 1599-1607, Nov. 1992.
    [16]P. Larsson, “A 2-1600-MHz CMOS clock recovery PLL with Low-Vdd capability,” IEEE J. Solid-State Circuits, vol. 34, pp. 1951-1960, Dec. 1999.
    [17]J.-S. Lee, M.-S. Keel, S.-I. Lim, S. Kim, “Charge Pump with perfect current matching characteristics in phase-locked loops,” Electronics Letter, pp. 1907-1908, Nov. 2000.
    [18]Gardner, Floyd M., Phaselock Techniques, 2rd ed., John Wiley and Sons, New York, 1979.
    [19]M. G. Johnson and E. L. Hudson, “A variable delay line PLL for CPU-comprocessor synchronization,” IEEE J. Solid-State Circuits, vol. 23, pp. 1218-1223, Oct. 1988.
    [20]T. H. and J. Kaiser, “A 900-MHz 2.5mA CMOS frequency synthesizer with an automatic SC tuning loop,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 424-431, Mar. 2001.
    [21]T.-C. Lee and Behzad Razavi, “A Stabilization Technique for Phase-Locked Frequency Synthesizers,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 888-894, June 2003
    [22]T.-C. Lee and W.-L. Lee, “A Spur Suppression Technique for Phase-Locked Frequency Synthesizers,” IEEE Int. Solid-State Circ., pp. 2432-2441, 2006.
    [23]C.-F. Liang, S.-H. Chen, and S.-I. Liu, “A digital calibration technique for charge pumps in phase-locked systems,”IEEE J. Solid-State Circuits, vol. 43, pp. 390-398, Feb. 2008.
    [24]Xiang Gao, Eric A. M. Klumperink, Gerard Socci, Mounir Bohsali, and Bram Naita, “Spur Reduction Techniques for Phase-Locked Loops Exploiting A Sub –Sampling Phase Detector,” IEEE J. Solid-State Circuits, vol. 45, pp. 1809 -1821, Sep. 2010.
    [25]R. Jacob Baker, CMOS Mixed-Signal Circuit Design, 2rd ed., IEEE Press, 2009.
    [26]Mehmet Soyuer, R. G. Meyer, “Frequency Limitations of Conventional Phase- Frequency Detector,” IEEE J. Solid-State Circuits, vol. 25, pp. 1019-1022, no. 4, Aug. 1990.
    [27]B. Razavi, Design of Integrated Circuit for Optical Communication, International Edition, McGraw-Hill, New York, 2003.
    [28]C.-Y. Kuo, J.-Y. Chang, and S.-I. Liu, “A spur-reduction technique for a 5-GHz frequency synthesizer,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 53, no. 3, pp. 526-533, Mar. 2006.
    [29]F. Herzel, G.. Fischer, and H. Gustat, “An integrated CMOS RF synthesizer for 802.11a wireless LAN,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1767-1770, Oct. 2003.
    [30]C. Lan and B. Razavi, “A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-m CMOStechnology,” IEEE J. Solid-State Circuits, vol. 35, no. 5,pp. 788-794, May 2000.
    [31]YUSUKE OTA and ROBERT G. SWARTZ, “Burst-Mode Compatible Optical Receiver With A Large Dynamic Range,” IEEE J. Lightwave Technology, vol. 8, no. 12, Dec. 1990.
    [32]M. Banu, and A. E. Dunlop, “A 660 Mb/s CMOS clock recovery circuit with instantaneous locking for NRZ data and burst-mode transmission,” IEEE Int. Solid-State Circ. Conf., pp. 102-103, Feb.1995.
    [33]C.-F. Liang, S.-C. Hwu, and S.-I. Liu, “A 2.5Gbps Burst-Mode Clock and Data Recovery Circuit,” Asian Solid-State Circuits Conf., pp. 457-460, Nov. 2005.
    [34]J. Terada, K. Nishimura, S. Kimura, H. Katsurai, N. Yoshimoto, and Y. Ohtomo , “A 10.3 Gb/s Burst-Mode CDR Using a DS DAC,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 12, Dec. 2008.
    [35]C.-F. Liang, S.-C. Hwu, Y.-H. Tu, Y.-L. Yang, H.-S. Li, “A reference-free, digital background calibration technique for gated-oscillator-based CDR/PLL,”, IEEE Symposium on VLSI Circuits, pp. 14-15, June 2009
    [36]C.-C. Chung and C.-Y. Lee, “An all-digital phase-locked loop for high-speed clock generation,” IEEE J. Solid-State Circuits, vol. 38, pp. 347-351, Feb. 2003.
    [37]J. D. H. Alexander, “Clock Recovery from Random Binary Data,” Electronics Letter, vol. 11, pp. 541-542, Oct. 1975.

    QR CODE