簡易檢索 / 詳目顯示

研究生: 魏宇宣
Yu-Hsuan Wei
論文名稱: 二氧化鈦/二氧化釕複合結構之製備與特性分析並探討其在染料敏化太陽能電池可能之應用
Growth control and Dye-Sensitized Solar Cells Application of TiO2/RuO2 Nanocomposites
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
李奎毅
Kuei-Yi Lee
程光蛟
Kwong-Kau Tiong
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 135
中文關鍵詞: 二氧化釕二氧化鈦染料敏化太陽能電池
外文關鍵詞: RuO2, TiO2, Dye-Sensitized Solar Cells
相關次數: 點閱:273下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用冷壁式有機金屬化學氣相沉積法製備二氧化鈦(Titanium dioxide,TiO2) /二氧化釕(Ruthenium dioxide,RuO2)奈米複合結構。觀察其表面形貌、分析其成長優選方向及結構特性,並探討其在染料敏化太陽能電池可能之應用。
首先,控制成長速率來減少二氧化釕奈米線數量與密度,之後成長二氧化鈦奈米結構於二氧化釕奈米結構於藍寶石(Sapphire,SA)(100)、不鏽鋼基板上來對照。利用拉曼散射量測來鑑定銳鈦礦(Anatase)與金紅石(Rutile)二氧化鈦結構成長在二氧化釕奈米結構上,X光繞射儀的結果指出銳鈦礦二氧化鈦與複合結構上的銳鈦礦二氧化鈦,主要都會以[110]方向優選成長,而金紅石二氧化鈦與複合結構上的金紅石二氧化鈦,在藍寶石基板主要都會以[001]方向優選成長,場發射式電子顯微鏡(FESEM)觀察出成長在藍寶石基板上,稀疏的二氧化釕奈米結構沿著[001]方向優選成長,而不銹鋼基板成長出稀疏不規則方向的奈米結構,並藉由穿透掃描式電子顯微鏡(TEM)觀察二氧化鈦包覆整隻二氧化釕奈米結構。
之後將銳鈦礦二氧化鈦與二氧化釕複合結構成長在不銹鋼基板上,探討其在染料敏化太陽能電池可能之應用,發現銳鈦礦二氧化鈦與二氧化釕複合結構遠比二氧化鈦的光電轉化率來得高,轉化率可從0.7 %提升到1.5 %。


Nanostructural TiO2 were grown on top of RuO2 sitting on sapphire (SA)(100) and SUS substrates by metal organic chemical vapor deposition (MOCVD) using titanium-tetraisopropoxide (TTIP, Ti[OCH(CH3)2]4) and bis(ethylcyclopentadienyl) ruthenium (II) as the source reagents. The growth control conditions and the potential application of the material system as dye-sensitized solar cell were explored.
The surface morphology, structural and spectroscopic properties of the TiO2/RuO2 nanocomposites were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), micro-Raman spectroscopy and transmission electron microscopy (TEM). FESEM micrographs showed different growth habits of TiO2/RuO2 heteronanostructures on SA(100) and SUS substrates. XRD results indicated the preferred orientation growth of A-TiO2(110)/RuO2 on SA(100) and SUS substrates, and R-TiO2(001)/RuO2(001) on SA(100) substate. The Raman spectra revealed that nanostructural anatase and/or rutile TiO2 had been deposited on the RuO2 nanocrystals. The TEM image of TiO2-deposited RuO2 nanowire (NW) showed uniform distribution and random direction of TiO2 NCs had been grown on the surface of the RuO2 NWs.
The study of possible application of using A-TiO2/RuO2 nanocomposite grown on the SUS substrate as an electrode for dye-sensitized solar cell has been carried out as well. The photoelectric conversion efficiency of A-TiO2/RuO2 nanocomposite demonstrated an increase from 0.7 to 1.5 % as compared with A-TiO2 electrodes.

論文摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 X 表目錄 XVIII 第一章 緒論 1 1.1 研究動機 1 1.2 二氧化釕 2 1.3 二氧化鈦 4 1.4 染料敏化太陽能電池之介紹 7 1.4.1 染料敏化太陽能電池原理 7 1.4.2 染料敏化太陽能電池結構 11 1.4.3 電流電壓特性曲線 15 第二章 實驗方法與步驟 17 2.1 樣品製備 17 2.1.1 實驗藥品及規格 17 2.1.2 有機金屬化學氣相沉積(MOCVD)設備 19 2.1.3 二氧化釕與二氧化鈦奈米柱沉積步驟 20 2.1.4 染料敏化太陽能電池組裝 21 2.2 特性分析方法 22 2.2.1 場發射掃描式電子顯微鏡(FESEM) 22 2.2.2 X-Ray 繞射儀(XRD) 23 2.2.3 拉曼散射(Raman Scattering)儀 24 2.2.4 掃描穿透式電子顯微鏡(TEM) 24 2.2.5 光源 25 2.2.6 電化學分析儀 26 第三章 結果與討論 28 3.1 二氧化釕奈米結構之成長 29 3.1.1 二氧化釕奈米結構成長於SA(100)基板上 29 3.1.2 二氧化釕奈米結構成長於SUS基板上 34 3.2 銳鈦礦二氧化鈦奈米結構之成長 38 3.2.1銳鈦礦二氧化鈦奈米結構之成長於SA(100)基板上 38 3.2.2銳鈦礦二氧化鈦奈米結構之成長於SUS基板上 42 3.3 金紅石二氧化鈦奈米結構之成長 46 3.3.1金紅石二氧化鈦奈米結構之成長於SA(100)基板上 46 3.3.2金紅石二氧化鈦奈米結構之成長於SUS基板上 50 3.4 銳鈦礦二氧化鈦/二氧化釕奈米結構之成長與特性分析 54 3.4.1 銳鈦礦二氧化鈦/二氧化釕奈米結構之成長於SA(100)基板上 54 3.4.2 銳鈦礦二氧化鈦/二氧化釕奈米結構之成長於SUS基板上 60 3.5 金紅石二氧化鈦/二氧化釕奈米結構之成長與特性分析 64 3.5.1 金紅石二氧化鈦/二氧化釕奈米結構之成長於SA(100)基板上 64 3.5.2 金紅石二氧化鈦/二氧化釕奈米結構之成長於SUS基板上 69 3.6 染料敏化太陽能電池可能之應用 74 3.6.1 成長銳鈦礦二氧化鈦奈米結構時間變化之光電量測 75 3.6.2 成長銳鈦礦二氧化鈦時間變化/二氧化釕短時間之光電量測 81 3.6.3 成長銳鈦礦二氧化鈦時間變化/二氧化釕長時間之光電量測 89 3.6.4 成長銳鈦礦二氧化鈦時間變化/二氧化釕之光電量測整理 96 第四章 結論 99 參考文獻 101

[1] G. R. Patzke, F. Krumeich, and R. Nesper, “Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology,” Angew. Chem. Int. Ed., vol. 41, No. 14, pp. 2446-2461, 2002.
[2] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater., vol. 15, No. 5, pp. 353-389, 2003.
[3] C. N. R. Rao, and A. Govindaraj, “Nanotubes and nanowires,” Royal Society of Chemistr, London, 2005.
[4] R. H. Baughman, A. V. Zakhidov, and W. A. de Heer, “Carbon nanotubes-the route toward applications,” Science, vol. 297, No. 5582, pp. 787-792, 2002.
[5] R. S. Chen, Y. S. Huang, Y. M. Liang, C. S. Hsiech, D. S. Tsai, and K. K. Tiong, “Field emission of vertical aligned conductive IrO2 nanorods,” Appl. Phys. Lett., vol. 84, No. 9, pp. 1552-1554, 2004.
[6] A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, vol. 279, No. 5348, pp. 208-211, 1998.
[7] N. Wang, Y. F. Zheng, Y. H. Tang, C. S. Lee, and S. T. Lee, “SiO2-enhanced synthesis of Si nanowires by laser ablation,” Appl. Phys. Lett. , vol. 73, No. 26, pp. 3902-3904, 1998.
[8] W. S. Shi, Y. F. Zheng, Y. H. Tang, C. S. Lee, and S. T. Lee, “Oxide-assisted growth and optical characterization of gallium-arsenide nanowires,” Appl. Phys. Lett., vol. 78, No. 21, pp. 3304-3306, 2001.
[9] J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science, vol. 293, No. 5534, pp. 1455-1457, 2001.
[10] H. M. Kim, D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, and K. S. Chung, “Growth of GaN nanorods by a hydride vapor phase epitaxy method,” Adv. Mater., vol. 14, No. 13-14, pp. 991-993, 2002.
[11] C. C. Chen and C. C. Yeh, “Large-scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater., vol. 12, No.10, pp. 738-741, 2000.
[12] M. S. Sander, M. J. Côté, W. Gu, B. M. Kile, and C. P. Tripp, “Template assisted fabrication of dense aligned arrays titania nanatubes with well-controlled dimensions on substrates,” Adv. Mater., vol. 16, No. 22, pp. 2052-2057, 2004.
[13] K. W. Cheng, Y. T. Lin, C. Y. Chen, C. P. Hsiung, J. Y. Gan, J.W. Yeh, C. H. Hsieh, and L. J. Chou, “In situ epitaxial TiO2 on RuO2 nanorods with reactive sputtering,” Appl. Phys. Lett., vol. 88, No. 4, pp. 043115-1~043115-3, 2006.
[14] S. Han, C. Li, Z. Liu, B. Lei, D. Zhang, W. Jin, X. Liu, T. Tang, and C. Zhou, “Transition metal oxide core-shell nanowires: Generic synthesis and tansport studies,” Nano Lett., vol. 4, No. 7, pp. 1241-1246, 2004.
[15] D. Zhang, Z. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour, and C. Zhou, “Megnetic (Fe3O4) Core-Shell nanowires: synthesis and megnetoresistance,” Nano Lett., vol. 4, No. 11, pp. 2151-2155, 2004.
[16] JCPDS card no. 21-1172, International Centre for Diffraction Data, Newtown Square, PA, USA.
[17] W. D. Ryden, A. W. Lawson, and C. C. Sartain, “ Electrical transport properties of IrO2 and RuO2,” Phys. Rev. B, vol. 1, No. 4, pp. 1494-1500, 1970.
[18] L. Krusin-Elbaum, M. Wittmer, and D. S. Yee, “Characterization of reactively sputtered ruthenium dioxide for very large scale integrated metallization,” Appl. Phys. Lett., vol. 50, No. 26, pp.1879-1881, 1987.
[19] M. L. Green, M. E. Gross, L. E. Papa, K. J. Schnoes, and D. Brasen, “Chemical vapor deposition of ruthenium and ruthenium dioxide films,” J. Electrochem. Soc., vol. 132, No. 11, pp. 2677-2685, 1985.
[20] R. G. Vadimsky, R. P. Frankenthal, and D. E. Thompson, “Ru and RuO2 as electrical contact materials: Preparation and environmental interactions,” J. Electrochem. Soc., vol. 126, No. 11, pp. 2017-2023.
[21] E. F. Kolawa, C. T. So, E. T. S. Pan, and M. A. Nicolet, “Reactively sputtered RuO2 diffusion barriers,” Appl. Phys. Lett., vol. 50, No. 13, pp. 854-855, 1987.
[22] A. Belkind, Z. Orban, J. L. Vossen, and J. A. Woolban, “Optical properties of RuO2 films deposited by reactive sputtering,” Thin Solid Films, vol. 207, No. 1-2, pp. 242-247, 1992.
[23] M. Wittmer, “Barrier layers: Principles and applications in microelectronics,” J. Vac. Sci. Technol. A, vol. 2, No. 2, pp. 273-280, 1984.
[24] Q. X. Jia and W. A. Anderson, “Sputter deposition of Yba2Cu3O7-x films on Si at 500°C with conducting metallic oxide as a buffer layer,” Appl. Phys. Lett. vol. 57, No. 3, pp. 304-306, 1990.
[25] Q. X. Jia and W. A. Anderson, “Conducting metallic oxide contacts on superconducting YBa2Cu3O7-x thin films,” IEEE Trans. Compon. Hybrids Manuf. Technol. vol. 15, No. 1, pp. 121-125, 1992.
[26] L. A. Bursill, M. Reaney, D. P. Vijay, and S. B. Desu, “Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes,” J. Appl. Phys., vol. 75, No. 3, pp.1521-1525, 1994.
[27] H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, “Influence of platinum interlayers on the electrical properties of RuO2/Pb (Zr0.53Ti0.47)O3/RuO2 capacitor heterostructures,” Appl.Phys. Lett., vol. 66, No. 2, pp. 239-241, 1995.
[28] K. Takemura, T. Sakuma, and Y. Miyasada, “High dielectric constant (Ba,Sr)TiO3 thin films prepared on RuO2/sapphire,” Appl. Phys. Lett., vol. 64, No. 22, pp. 2967-2969, 1994.
[29] J. G. Lee, S. K. Min, and S. H. Choh, “Deposition and properties of reactively sputtered ruthenium dioxide thin films as an electrode for ferroelectric capacitors,” Jpn. J. Appl. Phys., vol.33, No. 12B, pp. 7080-7085, 1994.
[30] S. D. Bernstein, T. Y. Wong, Y. Y. Kisler, and R. W. Tustison, “Fatigue of ferroelectric PbZrxTiyO3 capacitors with Ru and RuOx electrodes,” J. Mater. Res., vol. 8, No. 1, pp. 12-13, 1993.
[31] Q. X. Jia, L. H. Chang, and W. A. Anderson, “Surface and interface properties of ferroelectric BaTiO3 thin films on Si using RuO2 as an electrode,” J. Mater. Res., vol. 9, No. 10, pp. 2561-2565, 1994.
[32] A. Labouriau and W. L. Earl, “Titanium solid-state NMR in anatase, brookite and rutile,” Chem. Phys. Lett., vol. 270, No 3-4, pp. 278-284, 1997.
[33] K. Okimura, “Low temperature growth of rutile TiO2 films in modified RF magnetron sputtering,” Surf. Coat. Technol., vol. 135, No. 2-3, pp. 286-290, 2001.
[34] D. R. Burgess, T. J. Anderson, P. A. Morris Hotsenpiller, and J. L. Hohman, “Solid precursor MOCVD of heteroepitaxial rutile phase TiO2,” J. Cryst. Growth, vol. 166, No. 1, pp. 763-768, 1996.
[35] T. Sekiya, S. Ohta, S. Kamei, M. Hanakawa, and S. Kurita, “Raman spectroscopy and phase transition of anatase TiO2 under high pressure,” J. Phys. Chem. Solids, vol. 62, No. 4, pp. 717-721, 2001.
[36] N. Hossks, T. Sekiya, and S. Kurita, “Excitonic state in anatase TiO2 single crystal,” J. Lumin., vol. 72-74, pp. 874-875, 1997.
[37] V. Swamy and L. S. Dubrovinsky, “Bulk modulus of anatase,” J. Phys. Chem. Solids, vol. 62, No. 4, pp. 673-675, 2001.
[38] N. Robertson, “Optimizing dyes for dye-sensitized solar cells,” Angew. Chem .Int. Ed., vol. 45, pp. 2338-2345, 2006.
[39] Hagfeldt and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems,” Chem. Rev., vol. 95, pp. 49-68, 1995.
[40] K. Kalyanasundaram and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coord. Chem. Rev., vol. 77, pp. 347-414, 1998.
[41] M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells,” Curr. Opin. Colloid Interface Sci., vol. 4, pp. 314-321, 1999.
[42] X.-T. Zhang, H.-W. Liu, T. Taguchi, Q.-B. Meng, O. Sato, and A. Fujishima, “Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films,” Sol. Energy Mater. Sol. Cells, vol. 4981, pp. 197-203, 2004.
[43] K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida, “Spraydeposition of electrospun TiO2 nanorods for dye-sensitized solar cell,” Nanotechnology, vol. 18, pp. 365709-1-365709-5, 2007.
[44] K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett., vol. 7, pp. 69-74, 2007.
[45] M. S. Akhtar, M. A. Khan, M. S. Jeon, and O.-B. Yang, “Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells,” Electrochim. Acta, vol. 53, pp. 7896-7874, 2008.
[46] N. N. Dinh, M.-C. Bernard, A. H. L. Goff, T. Stergiopoulos, and P. Falaras,“Photoelectrochemical solar cells based on SnO2 nanocrystalline films,” C. R. Chimie, vol. 9, pp. 676-683, 2006.
[47] D. B. Menzies, R. Cervini, Y.-B. Cheng, G. P. Simon, and L. Spiccia, “Nanostructured ZrO2-coated TiO2 electrodes for dye-sensitised solar cells,” J.Sol-Gel Sci. Technol., vol. 32, pp. 363-366, 2004.
[48] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata,H. Arakawa, and M. Tachiya, “Efficiencies of electron injection from excited N3 into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films,” J. Phys. Chem. B, vol. 108, pp. 4818-4822, 2004.
[49] G. Oskam, B. V. Bergeron, G. J. Meyer, and P. C. Searson, “Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells,” J. Phy. Chem. B, vol. 105, pp.6867-6873, 2001.
[50] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett., vol. 6, pp. 215-218, 2006.
[51] D.-J. Yang, H. Park, S.-J. Cho, H.-G. Kim, and W.-Y. Choi, “ TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area,” J. Phys. Chem. Solids, vol. 69, pp. 1272-1275, 2008.
[52] M. Hočevar, U. O. Kraŝovec, M. Berginc, G. Dražič, N. Hauptman, and M. Topič,“Development of TiO2 pastes modified with pechini sol-gel method for high efficiency dye-seinsitized solar cell,” J. Sol-Gel Sci. Technol., vol. 48, pp. 156-162, 2008.
[53] M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, pp. 338-344, 2001.
[54] M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis,” Chem. Rev., vol.93, pp. 341-357, 1993.
[55] A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., “Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results,” Chem. Rev., vol. 95, pp. 735-758, 1995.
[56] F.-T. Kong, S.-Y. Dai, and K. J. Wang, “Review of recent progress in dye-sensitized solars,” Adv. Optoelectron., vol. 40, pp. 75384-75397, 2007.
[57] M. Gratzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells,” Inorg. Chem., vol. 44, pp. 6841-6851, 2005.
[58] 粘凱翔, 「利用二氧化鈦披覆於垂直成長之奈米碳管束陣列作為染料敏化太陽能電池陽極之研究」, 碩士論文, 國立台灣科技大學, 2010.

QR CODE