簡易檢索 / 詳目顯示

研究生: 羅林
Lin Lo
論文名稱: 以銀改質TiO2於UV/LED程序 氧化水溶液中三價砷之研究
Photooxidation of As(III) in Aqueous Phase by Silver Modified TiO2 in UV/LED Process
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 131
中文關鍵詞: 光觸媒催化氧化三價砷氧化銀改質二氧化鈦週期照光紫外光發光二極體動力學分析
外文關鍵詞: Photocatalytic oxidation, As(III) oxidation, Ag/TiO2, Periodic illumination, UV-LED, Kinetic analysis
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將以銀改質二氧化鈦光觸媒提升水溶液中三價砷的氧化並藉由紫外光發光二極體為光源,探討各種實驗操作變因(如:水溶液pH值、銀添加量、光強度、初始濃度、雙氧水濃度、週期照光和重複性測試)對於光氧化三價砷之影響,並且透過BET、XRD、SEM、UV-Vis DRS和界達電位,進行光觸媒的物化特性之分析。
    研究結果顯示,相較於純二氧化鈦光觸媒,以1 wt.%銀改質之二氧化鈦光觸媒有較佳之反應速率,由於Ag/TiO2表面電位的影響,在溶液pH值為三的情況下有最佳的氧化效率。此外,透過在反應中加入雙氧水雖然對三價砷的選擇率不高但可以明顯提升氧化速率。在間歇照光實驗中,當總照光時間固定為60分鐘時,氧化效率隨著暗期時間的拉長以及光期時間的縮短而提升。此外,在連續照光以及間歇照光下操作之光觸媒氧化三價砷行為符合Langmuir-Hinshewood動力模式,並且可以透過調整入射光強度去達到省能的效果。


    Photooxidation of As(III) by Ag/TiO2 in the aqueous phase were conducted at UV-LED illumination, the effect of solution pH, different silver dosage, light intensity, initial As(III) concentration, initial H2O2 concentration, periodic illumination and recyclability testing were evaluated in a batch reactor. The characterizations of photocatalyst were analyzed by Brunauer-Emmett-Teller surface area measurement (BET), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and zeta potential.
    The results demonstrated that 1 wt.% of silver modified TiO2 exhibited higher reaction rate than pure TiO2. Due to the pHzpc of Ag/TiO2, the oxidation efficiency showed better performance at pH 3. To further enhance the reaction efficiency, the result showed the efficiency significant increase with the presence of H2O2 but low selectivity. With the decreasing illumination period and increasing dark period, the oxidation efficiency enhanced when the total illumination time was 60 minutes. Moreover, the experimental results indicate that the interfacial charge transfer step was rate-determining. Consequently, the photocatalytic oxidation of As(III) by the UV-LED process could be well described by the kinetic equation and the energy saving can be achieved by adjusting the light intensity.

    中文摘要 I Abstract II Acknowledgements III Table of Content IV List of Figure VII List of Table XI List of Symbol XIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and Scope 3 Chapter 2 Literature Review 4 2.1 Photolysis and Photocatalysis 4 2.1.1 Basic Properties of TiO2 4 2.1.2 Modification of TiO2 6 2.1.3 Reaction Mechanisms and Kinetics of Photocatalytic Reactions 8 2.1.4 Application of Control Periodic Illumination for TiO2 Thin Film Process 12 2.2 Photooxidation of As(III) in Aqueous Solutions 15 2.2.1 Arsenic Removal Process 15 2.2.2 Reaction Mechanism of As(III) 19 2.3 Operating Factors Affecting Photocatalytic Redox Reactions 21 2.3.1 Solution pH 21 2.3.2 Light Intensity 24 2.3.3 Initial Concentration of As(III) 25 2.3.4 Silver Loaded Photocatalyst 25 2.3.5 Introducing Oxidants 26 2.3.6 Periodic illumination 29 Chapter 3 Materials and Experiments 31 3.1 Materials 31 3.2 Experimental Instruments and Apparatus 32 3.2.1 Experimental Apparatus 32 3.2.2 Experimental Instruments 36 3.3 Experimental Procedures 37 3.3.1 Experimental Framework 37 3.3.2 Preparation of Photocatalyst 39 3.3.3 Background Experiments 40 3.3.4 Photooxidation of As(III) under UV-LED Illumination 47 Chapter 4 Results and Discussion 48 4.1 Photooxidation of As(III) under Continuous Illumination 48 4.1.1 Characterization of TiO2-Ti Foil 48 4.1.2 Effect of Solution pH and Different Silver Modified TiO2 58 4.1.3 Effect of Light Intensity 65 4.1.4 Effect of Initial Concentration of Metal Ions 68 4.1.5 Effect of Initial Concentration of H2O2 71 4.2 Photooxidation of As(III) under UV-LED Illumination 73 4.2.1 Characterization of TiO2-Ti Foil After Reaction 73 4.2.2 Effect of Periodic Illumination 79 4.2.3 Recyclability Testing 84 4.3 Kinetic Analysis and Proposed Mechanisms 86 4.3.1 Kinetic Analysis 86 4.3.2 Proposed Mechanism 95 Chapter 5 Conclusions and Recommendations 99 Reference 102

    Abbass, A. E., Janse Van Vuuren, A., Swart, H. C., and Kroon, R. E., “Distinguishing the Nature of Silver Incorporated in Sol-gel Silica,” J. Non-Cryst. Solids, Vol. 475, pp. 71-75 (2017)
    Albiter, E., Valenzuela, M. A., Alfaro, S., Valverde-Aguilar, G., and Martínez-Pallares, F. M., “Photocatalytic Deposition of Ag Nanoparticles on TiO2 : Metal Precursor Effect on the Structural and Photoactivity Properties,” J. Saudi Chem. Soc., Vol. 19(5), pp. 563-573 (2015)
    Anandan, S., Sathish Kumar, P., Pugazhenthiran, N., Madhavan, J., and Maruthamuthu, P., “Effect of Loaded Silver Nanoparticles on TiO2 for Photocatalytic Degradation of Acid Red 88,” Sol. Energy Mater. Sol. Cells, Vol. 92(8), pp. 929-937 (2008)
    Basavarajappa, P. S., Patil, S. B., Ganganagappa, N., Reddy, K. R., Raghu, A. V., and Reddy, C. V., “Recent Progress in Metal-Doped TiO2, Non-Metal Doped/Codoped TiO2 and TiO2 Nanostructured Hybrids for Enhanced Photocatalysis,” Int. J. Hydrog. Energy. Vol. 45, pp. 7764-7778 (2020)
    Beranek, R. and Kisch, H., “Tuning the Optical and Photoelectrochemical Properties of Surface-Modified TiO2,” Photochem. Photobiol. Sci., Vol. 7(1), pp. 40-48 (2008)
    Bledowski, M., Wang, L., Ramakrishnan, A., Khavryuchenko, O. V., Khavryuchenko, V. D., Ricci, P. C., Strunk, J., Cremer, T., Kolbeck, C. and Beranek, R., “Visible-Light Photocurrent Response of TiO2-Polyheptazine Hybrids: Evidence for Interfacial Charge-Transfer Absorption,” Phys. Chem. Chem. Phys., Vol. 13(48), pp. 21511-21519 (2011)
    Buechler, K. J., Nam, C. H., Zawistowski, T. M., Noble, R. D., and Koval, C. A., “Design and Evaluation of a Novel-Controlled Periodic Illumination Reactor To Study Photocatalysis,” Ind. Eng. Chem. Res., Vol. 38(4), pp. 1258-1263 (1999)
    Chen, H. W., Ku, Y., and Irawan, A., “Photodecomposition of O-Cresol by UV-LED/TiO2 Process with Controlled Periodic Illumination,” Chemosphere, Vol. 69(2), pp. 184-190 (2007a)
    Chen, X., Wang, H., Chen, M., Qin, X., He, H., and Zhang, C., “Co-Function Mechanism of Multiple Active Sites over Ag/TiO2 for Formaldehyde Oxidation,” Appl. Catal. B, Vol. 282, pp. 119543-119551 (2021)
    Chen, Y., Shen, C., Wang, J., Xiao, G., and Luo, G., “Green Synthesis of Ag-TiO2 Supported on Porous Glass with Enhanced Photocatalytic Performance for Oxidative Desulfurization and Removal of Dyes under Visible Light,” ACS Sustain. Chem. Eng., Vol. 6(10), pp. 13276-13286 (2018)
    Choi, W., Yeo, J., Ryu, J., Tachikawa, T., and Majima, T., “Photocatalytic Oxidation Mechanism of As(III) on TiO2 : Unique Role of As(III) as a Charge Recombinant Species,” Environ. Sci. Technol., Vol. 44(23), pp. 9099-9104 (2010)
    Chuang, H. Y., and Chen, D. H., “Fabrication and Photocatalytic Activities in Visible and UV Light Regions of Ag@TiO2 and NiAg@TiO2 Nanoparticles,” Nanotechnology, Vol. 20(10), pp. 105704-105713 (2009)
    Cornu, C. J. G., Colussi, A. J., and Hoffmann, M. R., “Time Scales and pH Dependences of the Redox Processes Determining the Photocatalytic Efficiency of TiO2 Nanoparticles from Periodic Illumination Experiments in the Stochastic Regime,” J. Phys. Chem. B, Vol. 107, pp. 3156-3160 (2003)
    Dalrymple, O. K., Stefanakos, E., Trotz, M. A., and Goswami, D. Y., “A Review of the Mechanisms and Modeling of Photocatalytic Disinfection,” Appl. Catal. B, Vol. c98(1-2), pp. 27-38 (2010)
    Dhar, R. K., Zheng, Y., Rubenstone, J., and van Geen, A., “A Rapid Colorimetric Method for Measuring Arsenic Concentrations in Groundwater,” Anal. Chim. Acta, Vol. 526(2), pp. 203-209 (2004)
    Di Somma, I., Clarizia, L., Satyro, S., Spasiano, D., Marotta, R., and Andreozzi, R., “A Kinetic Study of the Simultaneous Removal of EDDS and Cupric Ions from Acidic Aqueous Solutions by TiO2-Based Photocatalysis under Artificial Solar Light Irradiation and Deaerated Batch Conditions,” Chem. Eng. J., Vol. 270, pp. 519-527 (2015)
    Ding, Z., Hu, X., Yue, P. L., Lu, G. Q., and Greenfield, P. F., “Synthesis of Anatase TiO2 Supported on Porous Solids by Chemical Vapor Deposition,” Catal. Today, Vol. 68(1-3), pp. 173-182 (2001)
    Dutta, P. K., Pehkonen, S. O., Sharma, V. K. and Ray, A. K., “Photocatalytic Oxidation of Arsenic(III): Evidence of Hydroxyl Radicals,” Environ. Sci. Technol., Vol. 39, pp. 1827-1834 (2005)
    Ferguson, M. A., Hoffmann, M. R. and Hering, J. G., “TiO2-Photocatalyzed As(III) Oxidation in Aqueous Suspensions: Reaction Kinetics and Effects of Adsorption,” Environ. Sci. Technol., Vol. 39, pp. 1880-1886 (2005)
    Fu, F., and Wang, Q., “Removal of Heavy Metal Ions from Wastewaters: A Review,” J. Environ. Manage., Vol. 92(3), pp. 407-418 (2011)
    Hamrouni, A., Azzouzi, H., Rayes, A., Palmisano, L., Ceccato, R., and Parrino, F., “Enhanced Solar Light Photocatalytic Activity of Ag Doped TiO2-Ag3PO4 Composites,” Nanomaterials, Vol. 10(4), pp. 795-809 (2020)
    Herrmann, J. M., “Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants,” Catal. Today, Vol. 53, pp. 115-126 (1999)
    Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol. 95(1), pp. 69-96 (1995)
    Hou, W. M., and Ku, Y., “Photocatalytic Decomposition of Gaseous Isopropanol in a Tubular Optical Fiber Reactor under Periodic UV-LED Illumination,” J. Mol. Catal. A Chem., Vol. 374-375, pp. 7-11 (2013)
    Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T. and Thurnauer, M. C., “Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR,” J. Phys. Chem. B, Vol. 107(19), pp. 4545-4549 (2003)
    Jiraroj, D., Unob, F., and Hagège, A., “Degradation of Pb-EDTA Complex by a H2O2/UV Process,” Water Res., Vol. 40(1), pp. 107-112 (2006)
    Kajitvichyanukul, P., Ananpattarachai, J., and Pongpom, S., “Sol-Gel Preparation and Properties Study of TiO2 Thin Film for Photocatalytic Reduction of Chromium(VI) in Photocatalysis Process,” Sci. Technol. Adv. Mater., Vol. 6(3-4), pp. 352-358 (2005)
    Khoe, G.H., Zaw, M., Prasad, P.S., and Emett, M.T., “Photo-Assisted Oxidation of Inorganic Species in Aqueous Solution,” USA, WO1999005065A1, (2005)
    Kim, D., Bokare, A. D., Koo, M. S., and Choi, W., “Heterogeneous Catalytic Oxidation of As(III) on Nonferrous Metal Oxides in the Presence of H2O2,” Environ. Sci. Technol., Vol. 49(6), pp. 3506-3513 (2015)
    Kim, S. B. and Hong, S. C., “Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air Using Thin Film TiO2 Photocatalyst,” Appl. Catal., B, Vol. 35, pp. 305-315 (2002)
    Korovin, E., Selishchev, D., Besov, A., and Kozlov, D., “UV-LED TiO2 Photocatalytic Oxidation of Acetone Vapor: Effect of High Frequency Controlled Periodic Illumination,” Appl. Catal. B, Vol. 163, pp. 143-149 (2015)
    Ku, S. C., “Simultaneous Photocatalytic Oxidation and Reduction of As(III) and Cr(VI) Species in Aqueous Solution using TiO2 Photocatalysts,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2020)
    Ku, Y., and Jung, I. L., “Photocatalytic Reduction of Cr(VI) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide,” Water Res., Vol. 35(1), pp. 135-142 (2001)
    Ku, Y., Shiu, S. J., and Wu, H. C., “Decomposition of Dimethyl Phthalate in Aqueous Solution by UV-LED/TiO2 Process under Periodic Illumination,” J. Photochem. Photobiol. A, Vol. 332, pp. 299-305 (2017)
    Lau, T. K., Chu, W., and Graham, N. J. D., “The Aqueous Degradation of Butylated Hydroxyanisole by UV/S2O82- : Study of Reaction Mechanisms via Dimerization and Mineralization,” Environ. Sci. Technol., Vol. 41(2), pp. 613-619 (2007)
    Lee, H. and Choi, W., “Photocatalytic Oxidation of Arsenite in TiO2 Suspension Kinetics and Mechanisms,” Environ. Sci. Technol., Vol. 36(17), pp. 3872-3878 (2002)
    Lescano, M. R., Zalazar, C. S., Cassano, A. E., and Brandi, R. J., “Arsenic (III) Oxidation of Water Applying a Combination of Hydrogen Peroxide and UVC Radiation,” Photochem. Photobiol. Sci., Vol. 10(11), pp. 1797-1083 (2011)
    Lescano, M., Zalazar, C., Cassano, A., and Brandi, R., “Kinetic Modeling of Arsenic(III) Oxidation in Water Employing the UV/H2O2 Process,” Chem. Eng. J., Vol. 211-212, pp. 360-368 (2012)
    Li, J. G., Ishigaki, T. and Sun, X., “Anatase, Brookite, and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions:  Phase-Selective Synthesis and Physicochemical Properties,” J. Phys. Chem. C, Vol. 111(13), pp. 4969-4976 (2007)
    Liang, R., Lena, C. M., Fong, L. C., Arlos, M. J., Leeuwen, J. V., Shahnam E., Peng, P., Servos, M. R. and Zhou, Y. N., “Photocatalytic Degradation using One-Dimensional TiO2 and Ag-TiO2 Nanobelts under UV-LED Controlled Periodic Illumination,” J. Environ. Chem. Eng., Vol. 5, pp. 4365-4373 (2017)
    Lin, Y. C., Bai, H., Lin, C. H. and Wu, J. F., “Applying Surface Charge Attraction to Synthesizing TiO2/Ag Composition for VOCs Photodegradation,” Aerosol Air Qual. Res., Vol. 13, pp. 1512-1520 (2013)
    Linsebigler, A. L., Lu, G. and Yates, J. T., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev., Vol. 95(3), pp. 735-758 (1995)
    Liu, S. X., Qu, Z. P., Han, X. W., and Sun, C. L., “A Mechanism for Enhanced Photocatalytic Activity of Silver-Loaded Titanium Dioxide,” Catal. Today, Vol. 93-95, pp. 877-884 (2004)
    Liu, S., Wang, N., Zhang, Y., Li, Y., Han, Z., and Na, P., “Efficient Removal of Radioactive Iodide Ions from Water by Three-Dimensional Ag2O-Ag/TiO2 Composites under Visible Light Irradiation,” J. Hazard. Mater., Vol. 284, pp. 171-181 (2015)
    Ma, C. M., Ku, Y., Kuo, Y. L., Chou, Y. C., and Jeng, F. T., “Effects of Silver on the Photocatalytic Degradation of Gaseous Isopropanol,” Water Air Soil Pollut., Vol. 197(1-4), pp. 313-321 (2008)
    Massoudinejad, M., Keramati, H., and Ghaderpoori, M., “Investigation of Photo-catalytic Removal of Arsenic from Aqueous Solutions Using UV/H2O2 in the Presence of ZnO Nanoparticles,” Chem. Eng. Commun., Vol. 207, pp. 1605-1615 (2019)
    Mills, A., and Valenzuela, M. A., “The Photo-Oxidation of Water by Sodium Persulfate, and Other Electron Acceptors, Sensitized by TiO2,” J. Photochem. Photobiol. A, Vol. 165(1-3), pp. 25-34 (2004)
    Nakata, K., and Fujishima, A., “TiO2 Photocatalysis: Design and Applications,” J. Photochem. Photobiol. C, Vol. 13(3), pp. 169-189 (2012)
    Nasikhudin, Diantoro, M., Kusumaatmaja, A., and Triyana, K., “Study on Photocatalytic Properties of TiO2 Nanoparticle in Various pH Condition,” J. Phys. Conf. Ser., Vol. 1011, pp. 012069-012076 (2018)
    Negishi, N., Takeuchi, K., and Ibusuki, T., “Preparation of the TiO2 Thin Film Photocatalyst by the Dip-Coating Process,” J. Solgel Sci. Technol., Vol. 13, pp. 691-694 (1998)
    Neppolian, B., Celik, E., and Choi, H., “Photochemical Oxidation of Arsenic(III) to Arsenic(V) using Peroxydisulfate Ions as an Oxidizing Agent,” Environ. Sci. Technol., Vol. 42(16), pp. 6179-6184 (2008)
    Neppolian, B., Doronila, A., and Ashokkumar, M., “Sonochemical Oxidation of Arsenic(III) to Arsenic(V) Using Potassium Peroxydisulfate as an Oxidizing Agent,” Water Res., Vol. 44(12), pp. 3687-3695 (2010)
    Ollis, D. F., Pelizzetti, E., and Serpone, N., “Photocatalyzed Destruction of Water Contaminants,” Environ. Sci. Technol., Vol. 25(9), pp. 1522-1529 (1991)
    Park, D., Yun, Y. S., Lee, H. W., and Park, J. M., “Advanced Kinetic Model of the Cr(VI) Removal by Biomaterials at Various pHs and Temperatures,” Bioresour. Technol., Vol. 99(5), pp. 1141-1147 (2008)
    Pham, T. D., and Lee, B. K., “Effects of Ag Doping on the Photocatalytic Disinfection of E. coli in Bioaerosol by Ag-TiO2/GF under Visible Light,” J. Colloid Interface Sci., Vol. 428, pp. 24-31 (2014)
    Prairie, M. R., Evans, L. R., Stange, B. M., and Martinez, S. L., “An Investigation of Titanium Dioxide Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals,” Environ. Sci. Technol., Vol. 27(9), pp. 1776-1782 (1993)
    Pu, S., Hou, Y., Chen, H., Deng, D., Yang, Z., Xue, S., Zhu, R., and Chu, W., “An Efficient Photocatalyst for Fast Reduction of Cr(VI) by Ultra-Trace Silver Enhanced Titania in Aqueous Solution,” Catalysts, Vol. 8(6), pp. 251-268 (2018)
    Ryu, J. and Choi, W., “Effects of TiO2 Surface Modifications on Photocatalytic Oxidation of Arsenite: The Role of Superoxides,” Environ. Sci. Technol., Vol. 38, pp. 2928-2933 (2004)
    Ryu, J., and Choi, W. Y., “Photocatalytic Oxidation of Arsenite on TiO2: Understanding the Controversial Oxidation Mechanism Involving Superoxides and the Effect of Alternative Electron Acceptors,” Environ. Sci. Technol., Vol. 40, pp. 7034-7039 (2006)
    Salehi, H., Ebrahimi, A. A., Ehrampoush, M. H., Salmani, M. H., Fard, R. F., Jalili, M., and Gholizadeh, A., “Integration of Photo-Oxidation Based on UV/Persulfate and Adsorption Processes for Arsenic Removal from Aqueous Solutions,” Groundw. Sustain. Dev., Vol. 10, pp. 100338-100344 (2020)
    Samad, A., Furukawa, M., Katsumata, H., Suzuki, T., and Kaneco, S., “Photocatalytic Oxidation and Simultaneous Removal of Arsenite with CuO/ZnO Photocatalyst,” J. Photochem. Photobiol. A, Vol. 325, pp. 97-103 (2016)
    Sczechowski, J. G., Koval, C. A., and Noble, R. D., “Evidence of Critical Illumination and Dark Recovery Times for Increasing the Photoefficiency of Aqueous Heterogeneous Photocatalysis,” J. Photochem. Photobiol. A, Vol. 74(2-3), pp. 273-278 (1993)
    Sczechowski, J. G., Koval, C. A., and Noble, R. D., “A Taylor Vortex Reactor for Heterogeneous Photocatalysis,” Chem. Eng. Sci., Vol. 50(20), pp. 3163-3173 (1995)
    Shalan, A. E., Rashad, M. M., Yu, Y., Lira Cantú, M., and Abdel Mottaleb, M. S. A., “A facile Low Temperature Synthesis of TiO2 Nanorods for High Efficiency Dye Sensitized Solar Cells,” Appl. Phys. A, Vol. 110(1), pp. 111-122 (2012)
    Spurr, R. A., and Myers, H., “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer,” Anal. Chem., Vol. 29(5), pp. 760-762 (1957)
    Tokode, O. I., Prabhu, R., Lawton, L. A. and Robertson, P. K. J., “The Effect of pH on the Photonic Efficiency of the Destruction of Methyl Orange under Controlled Periodic Illumination with UV-LED Sources,” Chem. Eng. J., Vol. 246, pp. 337-342 (2014b)
    Tokode, O. I., Prabhu, R., Lawton, L. A., and Robertson, P. K. J., “Effect of Controlled Periodic-Based Illumination on the Photonic Efficiency of Photocatalytic Degradation of Methyl Orange,” J. Catal., Vol. 290, pp. 138-142 (2012).
    Tokode, O., Prabhu, R., Lawton, L. A., and Robertson, P. K. J., “Controlled Periodic Illumination in Semiconductor Photocatalysis,” J. Photochem. Photobiol. A, Vol. 319-320, pp. 96-106 (2016)
    Tsimas, E.S., Tyrovola, K., Xekoukoulotakis, N.P., Nikolaidis, N.P., Diamadopoulos, E., and Mantzavinos, D., “Simultaneous Photocatalytic Oxidation of As(III) and Humic Acid in Aqueous TiO2 Suspensions,” J. Hazard. Mater., Vol. 169, pp. 376-385 (2009)
    Turchi, C. S. and Ollis, D. F., “Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack,” J. Catal., Vol. 122, pp. 178-192 (1990)
    Upadhya, S., and Ollis, D. F., “Simple Photocatalysis Model for Photoefficiency Enhancement via Controlled, Periodic Illumination,” J. Phys. Chem., Vol. 101(14), pp. 2625-2631 (1997)
    Viana, M. M., Mohallem, N. D. S., Miquita, D. R., Balzuweit, K., and Silva-Pinto, E., “Preparation of Amorphous and Crystalline Ag/TiO2 Nanocomposite Thin Films,” Appl. Surf. Sci., Vol. 265, pp. 130-136 (2013).
    Wang, C. Y., Pagel, R., Bahnemann, D.W., and Dohrmann, J. K., “Quantum Yield of Formaldehyde Formation in the Presence of Colloidal TiO2-Based Photocatalysts: Effect of Intermittent Illumination, Platinization, and Deoxygenation,” J. Phys. Chem. B, Vol. 108, pp. 14082-14092 (2004)
    Wang, C., Bahnemann, D. W., and Dohrmann, J. K., “Determination of Photonic Efficiency and Quantum Yield of Formaldehyde Formation in the Presence of Various TiO2 Photocatalysts,” Water Sci. Technol., Vol. 44(5), pp. 279-286 (2001)
    Wang, L., Wang, N., Zhu, L., Yu, H., and Tang, H, “Photocatalytic Reduction of Cr(VI) over Different TiO2 Photocatalysts and the Effects of Dissolved Organic Species,” J. Hazard. Mater., Vol. 152(1), pp. 93-99 (2008)
    Wang, W. Y. and Ku, Y., “Photocatalytic Degradation of Reactive Red 22 in Aqueous Solution by UV-LED Radiation” Water Res., Vol. 40, pp. 2249-2258 (2006)
    Wang, W. Y., Irawan, A., and Ku, Y., “Photocatalytic Degradation of Acid Red 4 Using a Titanium Dioxide Membrane Supported on a Porous Ceramic Tube,” Water Res., Vol. 42(19), pp. 4725-4732 (2008)
    Wang, Z., Bush, R. T., Sullivan, L. A., and Liu, J., “Simultaneous Redox Conversion of Chromium(VI) and Arsenic(III) under Acidic Conditions,” Environ. Sci. Technol., Vol. 47(12), pp. 6486-6492 (2013)
    Wei, Z., Fang, Y., Wang, Z., Liu, Y., Wu, Y., Liang, K., Yan, J., Pan, Z., and Hu, G.,“pH Effects of the Arsenite Photocatalytic Oxidation Reaction on Different Anatase TiO2 Facets,” Chemosphere, Vol. 225, pp. 434-442 (2019)
    Xu, J., Ding, W., Wu, F., Mailhot, G., Zhou, D., and Hanna, K., “Rapid Catalytic Oxidation of Arsenite to Arsenate in an Iron(III)/Sulfite System under Visible Light,” Appl. Catal. B, Vol. 186, pp. 56-61 (2016)
    Xu, M., Wang, Y., Geng, J., and Jing, D., “Photodecomposition of NOx on Ag/TiO2 Composite Catalysts in a Gas Phase Reactor,” Chem. Eng. J., Vol. 307, pp. 181-188 (2017)
    Xu, T. L., Cai, Y., Mezyk, S. P., and O'Shea, K. E., “The Roles of Hydroxyl Radical, Superoxide Anion Radical, and Hydrogen Peroxide in the Oxidation of Arsenite by Ultrasonic Irradiation,” Adv. Arsenic Res., Vol. 915, pp. 333-343 (2005b)
    Yang, H., Lin, W. Y., and Rajeshwar, K., “Homogeneous and Heterogeneous Photocatalytic Reactions Involving As(III) and As(V) Species in Aqueous Media,” J. Photochem. Photobiol. A, Vol. 123(1-3), pp. 137-143 (1999)
    Ye, Y., Feng, Y., Bruning, H., Yntema, D., and Rijnaarts, H. H. M., “Photocatalytic Degradation of Metoprolol by TiO2 Nanotube Arrays and UV-LED: Effects of Catalyst Properties, Operational Parameters, Commonly Present Water Constituents, and Photo-Induced Reactive Species,” Appl. Catal. B, Vol. 220, pp. 171-181 (2018)
    Yoon, S. H., and Lee, J. H., “Oxidation Mechanism of As(III) in the UV/TiO2 System: Evidence for a Direct Hole Oxidation Mechanism,” Environ. Sci. Technol., Vol. 39(24), pp. 9695-9701 (2005)
    Yoon, S. H., Oh, S. E., Yang, J.E., Lee, J. H., Lee, M., Yu, S., and Pak, D., “TiO2 Photocatalytic Oxidation Mechanism of As(III),” Environ. Sci. Technol., Vol. 43, pp. 864-869 (2009)
    Yu, B., Zhou, Y., Li, P., Tu, W., Li, P., Tang, L., Ye, J., and Zou, Z., “Photocatalytic Reduction of CO2 over Ag/TiO2 Nanocomposites Prepared with a Simple and Rapid Silver Mirror Method,” Nanoscale, Vol. 8(23), pp. 11870-11874 (2016)
    Zhang, J., Zhou, P., Liu, J. and Yu, J., “New Understanding of the Difference of Photocatalytic Activity among Anatase, Rutile and Brookite TiO2,” Phys. Chem. Chem. Phys., Vol. 16(38), pp. 20382-20386 (2014)
    Zhang, Q., Li, C., and Li, T., “Rapid Photocatalytic Decolorization of Methylene Blue using High Photon Flux UV/TiO2/H2O2 Process,” Chem. Eng. J., Vol. 217, pp. 407-413 (2013)
    Zhou J, Tian G, Chen Y, Wang J, Cao X, Shi Y, Pan K, and Fu H., “Synthesis of Hierarchical TiO2 Nanoflower with Anatase Rutile Heterojunction as Ag Support for Efficient Visible-Light Photocatalytic Activity,” Dalton Trans., Vol. 42(31), pp. 11242-11251 (2013)
    Zhou, S., and Ray, A. K., “Kinetic Studies for Photocatalytic Degradation of Eosin B on a Thin Film of Titanium Dioxide,” Ind. Eng. Chem. Res., Vol. 42(24), pp. 6020-6033 (2003)

    無法下載圖示 全文公開日期 2024/07/29 (校內網路)
    全文公開日期 2026/07/29 (校外網路)
    全文公開日期 2026/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE