簡易檢索 / 詳目顯示

研究生: 徐筱筑
Shiau-Ju Shiu
論文名稱: 發光二極體週期照射對光觸媒程序處理含鄰苯二甲酸二甲酯水溶液之影響
Photocatalytic Decomposition of Dimethyl Phthalate by UV-LED/TiO2 Process under Periodic Illumination
指導教授: 顧洋
Young Ku
口試委員: 曾迪華
Dyi-Hwa Tseng
蔣本基
Pen-Chi Chiang
劉志成
Jhy-Chern Liu
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 190
中文關鍵詞: 光觸媒催化週期照射紫外光發光二極體鄰苯二甲酸二甲酯光子利用率
外文關鍵詞: Photocatalysis, Periodic illumination, UV–LEDs, Dimethyl phthalate, Photonic efficiency
相關次數: 點閱:354下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用紫外光發光二極體為光源,以週期照射操作提高液相中反應物的降解率、光子利用率與總有機碳去除率。探討實驗操作變因為照射時間、暗時間、pH值、光強度、反應物的初始濃度及溶氧量。由實驗結果顯示,相較於連續照射操作下,週期照射在總照射時間為60分鐘時,可以改善反應物的降解率、光子利用率與總有機碳去除率。當暗時間增加,反應物的降解率也隨之增加,主要是因為暗時間增加時,會使反應物的觸媒表面更新提高,而進一步減少電子與電洞的再結合。此外,光電流量測實驗更再度證實電子與電洞再結合隨暗時間的增加而減少。週期照射會改變反應機制,相較於連續操作。
    當溶氧量為8.5或32.0 mg/L,暗時間對降解率影響較明顯,這可能是因為氧氣會再度吸附在二氧化鈦表面上,且更多的超氧離子基會存在暗時間下,以增加反應物的觸媒表面更新。本研究提出的動力式,可以描述以週期照射操作對光觸媒程序處理水溶液中鄰苯二甲酸二甲酯反應。在總照射時間為60分鐘下,隨暗時間增加,能源使用隨之減少。


    The use of periodic illumination with UV–LEDs for enhancing decomposition, photonic efficiency and total organic carbon (TOC) removal of photocatalytic processes in water has been investigated. The effect of illumination period, dark period, solution pH, light intensity, initial concentration of target compound and dissolved oxygen concentration on photodegradation, photonic efficiency and TOC removal has been studied by UV–LED/TiO2 process in a batch photoreactor. The results have shown that there are obvious effects on the decomposition, photonic efficiency and TOC removal at 60 min total irradiation time under continuous and periodic illumination. The decomposition of target compound was increased for experiments conducted with increasing dark period. It is believed that the replenished surface coverage of target compound increased and the photogenerated electron–hole recombination decreased for experiments conducted with increasing dark period. Besides, the photocurrent experiments further confirmed the decreasing photogenerated electron–hole recombination when dark period increased. There are different reaction mechanisms under continuous and periodic illumination by photocatalytic process.
    When the dissolved oxygen concentration was 8.5 or 32.0 mg/L, dark period has significant effect on the degradation efficiency. The results are may be depleted O2 re–adsorb onto the TiO2 surface and more O2•- are possibly presented during dark period with these higher dissolved oxygen concentrations, which could advance the replenished surface coverage of target compound. The photocatalytic decomposition of DMP by UV–LED/TiO2 process under periodic illumination could be well modeled by the the proposed approach. The electric energy saving increased significantly for experiments conducted with increasing dark period.

    Chinese Abstract I English Abstract II Acknowledgments IV Table of Contents VI List of Figures IX List of Tables XVI List of Symbols XVIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective and scope 2 Chapter 2 Review of Literatures 3 2.1 Introduction of Photocatalytic Redox Reactions 3 2.1.1 Fundamental of Photocatalytic Redox Reactions 5 2.1.2 Reaction Mechanisms and Kinetics of Photocatalytic Redox Reactions 7 2.1.3 Applications of Photocatalytic Redox Reactions 14 2.2 Operating Factors Affecting Photocatalytic Redox Reactions in Aqueous Solutions 16 2.2.1 Solution pH 16 2.2.2 Light Intensity 18 2.2.3 Initial Concentration 19 2.2.4 Dissolved Oxygen Concentration 20 2.2.5 Dimensional Nanostructured of TiO2 22 2.3 Fundamentals and Applications of Periodic Illumination for Photocatalysis 26 2.3.1 Concepts of Periodic Illumination for Photocatalysis 27 2.3.2 Modes of Operation in Periodic Illumination for Photocatalysis 33 2.3.3 Fctors Affecting Periodic Illumination for Photocatalysis 39 Chapter 3 Experimental Procedures and Apparatus 48 3.1 Experimental Framework 48 3.2 Materials 50 3.3 Experimental Instruments and Apparatus 51 3.4 Experimental Procedures 58 3.4.1 Coating Procedure of TiO2 Photocatalysts 58 3.4.2 Periodic Illumination on Photocatalytic Oxidation of Dimethyl Phthalate 60 3.5 Background Experiments 62 Chapter 4 Results and Discussion 66 4.1 Photocatalytic Oxidation of Dimethyl Phthalate in Aqueous Solutions under Continuous Illumination 66 4.1.1 Characterization of TiO2 film 66 4.1.2 Effect of Thickness of TiO2 Film 73 4.2 Photocatalytic Oxidation for Dimethyl Phthalate in Aqueous Solutions under Periodic Illumination 76 4.2.1 Effect of Periodic Illumination 76 4.2.2 Effect of Solution pH 102 4.2.3 Effect of Light Intensity 118 4.2.4 Effect of Initial Dimethyl Phthalate Concentration 132 4.2.5 Effect of Dissolved Oxygen Concentration 148 4.3 Kinetic Analysis, Proposed Mechanisms and Eletric Energy Saving of Photocatalytic Decomposition of Dimethyl Phthalate in Aqueous Solutions under Periodic Illumination 161 4.3.1 Kinetic Analysis 161 4.3.2 Proposed Mechanisms 169 4.3.3 Eletric Energy Saving 174 Chapter 5 Conclusions and Recommendations 176 Reference 180

    Ahmed, S., Rasul, M.G., Brown, R. and Hashib, M.A., “Influence of Parameters on the Heterogeneous Photocatalytic Degradation of Pesticides and Phenolic Contaminants in Wastewater: A Short Review, ” J. Environ. Manage., Vol. 92 , pp. 311–330 (2011)
    Araujo, P.Z., Morando, P.J., Martinez, E. and Blesa, M.A., “Time Evolution of Surface Speciation During Heterogeneous Photocatalysis: Gallic Acid on Titanium Dioxide, ” Appl. Catal. B: Environ., Vol. 125 , pp. 215–221 (2012)
    Atia, A.A., “Synthesis of A Quaternary Amine Anion Exchange Resin and Study Its Adsorption Behaviour for Chromate Oxyanions, ” J. Hazard. Mater. B., Vol. 137 , pp. 1049–1055 (2006)
    Augugliaro, V., Bellardita, M., Loddo, V., Palmisano, G., Palmisano, L. and Yurdakal, S., “Overview on Oxidation Mechanisms of Organic Compounds by TiO2 in Heterogeneous Photocatalysis, ” J. Photochem. Photobiol. C: Photochem. Rev., Vol. 13 , pp. 224–245 (2012)
    Bahnemann, W., Muneer, M. and Haque, M.M., “Titanium Dioxide–Mediated Photocatalysed Degradation of Few Selected Organic Pollutants in Aqueous Suspensions, ” Catal. Today, Vol. 124 , pp. 133–148 (2007)
    Bolton, J.R.G., Bircher, K.G., Tumas, W. and Tolman, C.A., “Figures-of-Merit for the Technical Development and Application of Advanced Oxidation Technologies for Both Electric- and Solar-driven System, ” Pure Appl. Chem., Vol. 73 , pp. 627–637 (2001)
    Buechler, K.J., Nam, C.H., Zawistowski, T.M., Noble, RD. and Koval, C.A., “Design and Evaluation of a Novel–Controlled Periodic Illumination Reactor to Study Photocatalysis, ” Ind. Eng. Chem. Res., Vol. 38 , pp. 1258–1263 (1999)
    Buechler, K.J., Zawistowski, T.M., Noble, R.D. and Koval, C.A., “Investigation of the Mechanism for the Controlled Periodic Illumination Effect in TiO2 Photocatalysis, ” Ind. Eng. Chem. Res., Vol. 40 , pp. 1097–1102 (2001)
    Cassano, A.E. and Alfano, O.M., “Reaction Engineering of Suspended Solid Heterogenous Photocatalytic Reactors, ” Catal. Today, Vol. 58 , pp. 167–197 (2000)
    Chan, P.Y., Gamal El–Din, M. and Bolton, J.R., “A Solar–Driven UV/Chlorine Advanced Oxidation Process, ” Water Res., Vol. 46 , pp. 5672–5682 (2012)
    Chen, H.W., Ku, Y. and Wu, C.Y., “Effect of LED Optical Characteristics on Temporal Behavior of o–Cresol Decomposition by UV/TiO2 Process, ” J. Chem. Technol. Biotechnol., Vol. 82 , pp. 626–635 (2007a)
    Chen, H.W., Ku, Y. and Irawan, A., “Photodecomposition of o–Cresol by UV/TiO2 Process with controlled periodic illumination, ” Chemosphere, Vol. 69 , pp. 184–190 (2007b)
    Chen, Y.H., Chen, L.L. and Shang, N.C., “Photocatalytic Degradation of Dimethyl Phthalate in an Aqueous Solution with Pt–Doped TiO2–Coated Magnetic PMMA Microspheres, ” J. Hazard. Mater., Vol. 172 , pp. 20–29 (2009)
    Chong, M.N., Jin, B., Chow, C.W.K. and Saint, C., “Recent Developments in Photocatalytic Water Treatment Technology: A Review, ” Water Res., Vol. 44 , pp. 2997–3027 (2010)
    Cornu, C.J.G., Colussi, A.J. and Hoffmann, M.R., “Time Scales and pH Dependences of the Redox Processes Determining the Photocatalytic Efficiency of TiO2 Nanoparticles from Periodic Illumination Experiments in the Stochastic Regime, ” J. Phys. Chem. B, Vol. 107 , pp. 3156–3160 (2003)
    Das, C., Patel, P., De, S. and Dasgupta, S., “Treatment of Tanning Effluent Using Nanofiltration Followed by Reverse Osmosis, ” Sep. Purif. Technol., Vol. 50 , pp. 291–299 (2006)
    Dholam, R., Patel, N., Santini, A. and Miotello, A., “Efficient Indium Tin Oxide/Cr–Doped–TiO2 Multilayer Thin Films for H2 Production by Photocatalytic Water–Splitting, ” Int. J. Hydrogen Energy, Vol. 35 , pp. 9581–9590 (2010).
    Dionysiou, D.D., Burbano, A.A., Suidan, M.T., Baudin I. and Laine, J.M., “Effect of Oxygen in a Thin–Film Rotating Disk Photocatalytic Reactor, ” Environ. Sci. Technol., Vol. 36 , pp. 3834–3843 (2002)
    Djokić, V.R., Marinković, A.D., Mitrić, M., Uskoković, P.S., Petrović, R.D., Radmilović, V.R. and Janaćković, D.T., “Preparation of TiO2/Carbon Nanotubes Photocatalysts: The Influence of the Method of Oxidation of the Carbon Nanotubes on the Photocatalytic Activity of the Nanocomposites, ” Ceram. Int., Vol. 38 , pp. 6123–6129 (2012)
    Elsellami, L., Vocanson, F., Dappozze, F., Puzenat, E., Paisse, O., Houas, A. and Guillard, C., “Kinetic of Adsorption and of Photocatalytic Degradation of Phenylalanine Effect of pH and Light Intensity, ” Appl. Catal. A: Gen., Vol. 380 , pp. 142–148 (2010)
    Fogler, H.S., “Elements of Chemical Reaction Engineering: Chapter 10: Steps in a Catalytic Reaction, ” Pearson, United State (2006)
    Foster, N.S., Koval, C.A., Sczechowski, J.G. and Noble, R.D., “Investigation of Controlled Periodic Illumination Effects on Photo–Oxidation Processes at Titanium Dioxide Films Using Rotating Ring Disk Photoelectrochemistry, ” J. Electroanal chem., Vol. 406 , pp. 213–217 (1996)
    Friedmann, D., Mendive, C. and Bahnemann, D., “TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis, ” Appl. Catal. B: Environ., Vol. 99 , pp. 398–406 (2010)
    Gong, J., Pu W., Yang, C. and Zhang, J., “Tungsten and Nitrogen Co–Doped TiO2 Electrode Sensitized with Fe–Chlorophyllin for Visible Light Photoelectrocatalysis, ” Chem. Eng. J., Vol. 209 , pp. 94–101 (2012)
    Hamill, N.A., Weatherley, L.R. and Hardacre, C., “Use of a Batch Rotating Photocatalytic Contactor for the Degradation of Organic Pollutants in Wastewater, ” Appl. Catal. B: Environ., Vol. 30 , pp. 49–60 (2001)
    Herrmann, J.M., “Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants, ” Catal. Today, Vol. 53 , pp. 115–126 (1999)
    Hirakawa, T. and Nosaka, Y., “Properties of O2•- and OH• Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions, ” Langmuir, Vol. 18 , pp. 3247–3254 (2002)
    Hirakawa, T., Yawata, K. and Nosaka, Y., “Photocatalytic Reactivity for O2•- and OH• Radical Formation in Anatase and Rutile TiO2 Suspension as the Effect of H2O2 Addition, ” Appl. Catal. A: Gen., Vol. 325 , pp. 105–111 (2007)
    Hou, W.M. and Ku, Y., “Photocatalytic Decomposition of Gaseous Isopropanol in A Tubular Optical Fiber Reactor under Periodic UV–LED Illumination, ” J. Mol. Catal. A: Chem., Vol. 374–375 , pp. 7–11 (2013)
    Ikehata, K., Gamal El–Din, M. and Snyder, S.A., “Ozonation and Advanced Oxidation Treatment of Emerging Organic Pollutants in Water and Wastewater, ” Ozone Sci. Eng., Vol. 30 , pp. 21–26 (2008)
    Iliev, V., Tomova, D., Bilyarska, L. and Tyuliev, G., “Influence of the Size of Gold Nanoparticles Deposited on TiO2 upon the Photocatalytic Destruction of Oxalic Acid, ” J. Mol. Catal. A: Chem., Vol. 263 , pp. 32–38 (2007)
    Jing, Y., Li, L., Zhang, Q., Lu, P., Liu, P. and Lu, X., “Photocatalytic Ozonation of Dimethyl Phthalate with TiO2 Prepared by A Hydrothermal Method, ” J. Haz. Mat., Vol. 189 , pp. 40–47 (2011)
    Joo, H., “A Simple Technique to Determine Quantum Yield for UV Photocatalytic Decomposition Studies, ” Korean J. Chem. Eng., Vol. 23 , pp. 931–934 (2006)
    Kondo, Y., Yoshikawa, H., Awaga, K., Murayama, M., Mori, T., Sunada, K., Bandow, S. and Iijima, S., “Preparation, Photocatalytic Activities, and Dye–Sensitized Solar–Cell Performance of Submicron–Scale TiO2 Hollow Spheres, ” Langmuir, Vol. 24 , pp. 547–550 (2008)
    Ku, S.C., “Effect of Periodic Illumination on Photocatalytic Decomposition of Bisphenol A in Aqueous Solutions Using UV–LEDs,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2012)
    Li, L., Ye, W., Zhang, Q., Sun, F., Lu, P. and Li, X., “Catalytic Ozonation of Dimethyl Phthalate over Cerium Supported on Activated Carbon, ” J. Haz. Mat., Vol. 170 , pp. 410–416 (2009)
    Li, T., Zhao, L., He, Y., Cai, J., Luo, M. and Lin, J., “Synthesis of g–C3N4/SmVO4 Composite Photocatalyst with Improved Visible Light Photocatalytic Activities in RhB Degradation, ” Appl. Catal. B: Environ., Vol. 129 , pp. 255–263 (2013)
    Liao, W., Zheng, T., Wang, P., Tu, S. and Pan, W., “Efficient Microwave–Assisted Photocatalytic Degradation of Endocrine Disruptor Dimethyl Phthalate over Composite Catalyst ZrOx/ZnO, ” J Environ Sci., Vol. 22 , pp. 1800–1806 (2010)
    Macak, J. M., Tsuchiya, H., Ghicov, A. and Schmuki, P., “Dye–Sensitized Anodic TiO2 Nanotubes, ” Electrochem. Commun., Vol. 7 , pp. 1133–1137 (2005)
    Mersiowsky, L., “Long-Term Fate of PVC Products and Their Additives in Landfills, ” Prog. Polym., Sci. 27 , pp. 2227–2277 (2002)
    Nakata, K. and Fujishima, A., “TiO2 Photocatalysis: Design and Applications, ” J. Photochem. Photobiol. C: Photochem. Rev., Vol. 13 , pp. 169–189 (2012)
    Oss, M., Kruve, A., Herodes, K. and Leito, I., “Electrospray Ionization Efficiency Scale of Organic Compounds, ” Anal. Chem., Vol. 82 , pp. 2865–2872 (2010)
    Rincon, A.G. and Pulgarin, C., “Effect of pH, Inorganic Ions, Organic Matter and H2O2 on E. coli K12 Photocatalytic Inactivation by TiO2–Implications in Solar Water Disinfection, ” Appl. Catal. B: Environ., Vol. 51 , pp. 283–302 (2004)
    Satoca, M.D. and Gomez, R., “A Photoelectrochemical and Spectroscopic Study of Phenol and Catechol Oxidation on Titanium Dioxide Nanoporous Electrodes, ” Electrochim. Acta, Vol. 55 , pp. 4661–4668 (2010)
    Sczechowski, J.G., Koval, C.A. and Noble, R.D., “Evidence of Critical Illumination and Dark Recovery Times Increasing the Photoefficiency of Aqueous Heterogeneous Photocatalysis, ” J. Photochem. Photobiol. A: Chem., Vol. 74 , pp. 273–278 (1993)
    Sczechowski, J.G., Koval, C.A. and Noble, R.D., “A Taylor Vortex Reactor for Heterogeneous Photocatalysis, ” Chem. Eng. Sci., Vol. 50 , pp. 3163–3173 (1995)
    Serpone, N., “Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis, ” J. Photochem. Photobiol. A: Chem., Vol. 104 , pp. 1–12 (1997)
    Spurr, R. A. and Myers, W., “Quantitative Analysis of Anatase–Rutile Mixtures with an X–Ray Diffractometer, ” Anal. Chem., Vol. 29 , pp. 760–762 (1957)
    Subramanian, M. and Kannan, A., “Photocatalytic Degradation of Phenol in a Rotating Annular Reactor, ” Chem. Eng. Sci., Vol. 65 , pp. 2727–2740 (2010)
    Sun, Z., Xu, L., Guo, W., Xu, B., Liu, S. and Li F., “Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self–Assembly of Titanium Dioxide and Polyoxometalates, ” J. Phys. Chem. C, Vol. 114 , pp. 5211–5216 (2010)
    Tokode, O.I., Prabhu, R., Lawton, L.A. and Robertson, P.K.J., “Effect of Controlled Periodic–Based Illumination on the Photonic Efficiency of Photocatalytic Degradation of Methyl Orange, ” J. Catal., Vol. 290 , pp. 138–142 (2012)
    Upadhya, U. and Ollis, D.F., “Simple Photocatalysis Model for Photoefficiency Enhancement via Controlled, Periodic Illumination, ” J. Phys. Chem. B, Vol. 101 , pp. 2625–2631 (1997)
    US EPA, “Code of Federal Regulations, ” 40 CFR , Part 136. USEPA (1992. and update)
    Venkatachalam, N., Palanichamy, M. and Murugesan, V., “Sol–Gel Preparation and Characterization of Alkaline Earth Metal Doped Nano TiO2: Efficient Photocatalytic Degradation of 4–Chlorophenol, ” J. Mol. Catal. A: Chem., Vol. 273 , pp. 173–185 (2007)
    Vincent, G. Marquaire, P.M. and Zahraa, O., “Abatement of Volatile Organic Compounds Using An Annular Photocatalytic Reactor: Study of Gaseous Acetone, ” J. Photoch. Photobio. A: Chem., Vol. 197 , pp. 177–189 (2008)
    Wang, W.Y., “Photoelectrochemical Properties of Titanium Dioxide and Decomposition of Dyes in Photocatalytic Membrane Reactors,” Doctor Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2006a)
    Wang, W.Y. and Ku, Y., “Photocatalytic Degradation of Reactive Red 22 in Aqueous Solution by UV–LED Radiation, ” Water Res., Vol. 40 , pp. 2249–2258 (2006b)
    Wang, W., Yu, J., Xiang, Q. And Cheng, B., “Enhanced Photocatalytic Activity of Hierarchical Mmacro/Mesoporous TiO2–Graphene Composites for Photodegradation of Acetone in Air, ” Appl. Catal. B: Environ., Vol. 119–120 , pp. 109–116 (2012)
    Xu, B., Gao, N.Y., Cheng, H., Xia, S.J., Rui, M. and Zhao, D.D., “Oxidative Degradation of Dimethyl Phthalate (DMP) by UV/H2O2 Process, ” J. Hazard. Mater., Vol. 172 , pp. 20–29 (2009)
    Xu, L.J., Chu, W. and Graham, N., “A Systematic Study of the Degradation of Dimethyl Phthalate Using a High–Frequency Ultrasonic Process, ” Ultrason. Sonochem., Vol. 20 , pp. 892–899 (2013)
    Yang, J., Dai, J., Chen, C. and Zhao, J., “Effects of Hydroxyl Radicals and Oxygen Species on the 4–Chlorophenol Degradation by Photoelectrocatalytic Reactions with TiO2–Film Electrodes, ” J. Photochem. Photobiol. A: Chem., Vol. 208 , pp. 66–77 (2009)
    Yuan, B.L., Li, X.Z. and Graham, N., “Reaction Pathways of Dimethyl Phthalate Degradation in TiO2–UV–O2 and TiO2–UV–Fe(VI) Systems, ” Chemosphere, Vol. 72 , pp. 197–204 (2008)
    Youn, N.K., Heo, J.E., Joo, O.S., Lee, H., Kim, J. and Min, B. K., “The Effect of Dissolved Oxygen on the 1,4–Dioxane Degradation with TiO2 and Au–TiO2 Photocatalysts, ” J. Haz. Mat., Vol. 177 , pp. 216–221 (2010)
    Zhang, L., He, Y., Ye, P., Wu, Y. and Wu, T., “Visible Light Photocatalytic Activities of ZnFe2O4 Loaded by Ag3VO4 Heterojunction Composites, ” J. Alloys Compd., Vol. 549 , pp. 105–113 (2013)
    Zhang, L., Mohamed, H.H., Dillert, R. and Bahnemann, D., “Kinetics and Mechanisms of Charge Transfer Processes in Photocatalytic Systems: A Review, ” J. Photochem. Photobiol. C: Photochem. Rev., Vol. 13 , pp. 263–276 (2012)
    Zhu, X., Yuan, C., Bao, Y., Yang, J. and Wu, Y., “Photocatalytic Degradation of Pesticide Pyridaben on TiO2 Particles, ” J. Mol. Catal. A: Chem., Vol. 229 , pp. 95–105 (2005)

    無法下載圖示 全文公開日期 2018/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE