簡易檢索 / 詳目顯示

研究生: 王政鑫
Cheng-Hsin Wang
論文名稱: 二鐵二硫催化劑用以無需光敏劑之光催化產氫系統之研究
Diiron Dithiolate Complexes for Unsensitized Photocatalytic Hydrogen Evolution
指導教授: 江明錫
Ming-Hsi Chiang
林昇佃
Shawn D. Lin
口試委員: 江明錫
Ming-Hsi Chiang
林昇佃
Shawn D. Lin
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 67
中文關鍵詞: 光催化氫氣光敏劑二鐵二硫化合物
外文關鍵詞: hydrogen, photocatalysis, unsensitized, diiron dithiolate complexes
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   氫氣作為目前最有潛力的能源載體,近年來有許多與[鐵鐵]氫化酵素有關的模型相繼問世。而本研究致力於開發以雙鐵雙硫化合物作為催化劑且不含光敏劑的光催化產氫系統,於此同時設計出了一系列於可見光波長範圍具有配體到金屬電子轉移 (ligand to metal charge transfer, LMCT) 特性的雙鐵雙硫化合物,此特性也表示了該催化劑藉由可見光驅動進一步將質子還原成氫氣的可能性。再搭配其含有大立障矽烷配位基 (SitBuPh2) 的結構特徵,使化合物 [PPN][{μ,k2-3,6-(OSitBuPh2)2-bdt}Fe2(CO)5(PPh2)] ([PPN][2], [PPN]+ = [(Ph3P)2N]+, bdt = 1,2-benzenedithiolate) 能在催化過程中有效增加氧化態中間體的穩定性。
      本研究先選擇一個可以同時滿足氧化淬滅循環 (oxidative quenching) 及還原淬滅循環 (reductive quenching) 兩種機制的還原劑,並於少量弱酸及低瓦數可見光光源的使用下優化產氫實驗的條件,其催化一小時產氫轉化率 (turnovernumber, TON) 可達 11.46 。另外也結合定電位電解法取代需額外加入的還原劑,在降低成本的同時也能維持光催化產氫系統之催化效能。


      As hydrogen is considered to be a potential energy carrier, a large number of [FeFe] hydrogenase models have been developed in the past several years for the purpose of hydrogen production. In this study, we synthesize a series of Fe2S2 complexes used in a photocatalytic H2 evolution system in the absence of photosensitizers. These Fe2S2 complexes can be photo-excited under visible light irradiation. The photo- excitation involves the charge transfer from the ligand to the Fe center (LMCT), and the excited states exhibit higher energy than the potential required for proton reduction. It allows us to investigate the H2 evolution reaction by the photocatalysts. Assisted with the bulky silyl substituents, stability of the catalytic intermediates from [PPN][(μ,k2-3,6-(OSitBuPh2)2-bdt)(μ-PPh2)Fe2(CO)5] ([PPN][2], [PPN]+ = [(Ph3P)2N]+, bdt = 1,2-benzenedithiolate) can be greatly enhanced.
      In this study, a catalytic process involving oxidative quenching and reductive
    quenching mechanism are investigated. By the selection of suitable sacrificial electron donors, the photocatalytic system in the presence of mild acids under visible-light irradiation is optimized to achieve the maximum performance. The observed TON in one hour reaches 11.46. We also use controlled potential electrolysis to regenerate electron donors. By doing so, addition of additional reducing agents is avoided to reduce the operational cost. The photocatalytic system still displays the superior catalytic performance.

    摘要.......................................................................... I Abstract ..................................................................... IV 謝誌.......................................................................... V 第一章 緒論................................................................... 1 1.1 前言...................................................................... 1 1.2 氫化酵素介紹.............................................................. 2 1.3 生物模擬化合物............................................................ 4 1.4 光催化產氫系統............................................................ 7 1.4.1 含光敏劑之光催化產氫系統................................................ 8 1.4.2 不含光敏劑之光催化產氫系統.............................................. 11 1.5 研究動機.................................................................. 14 第二章 實驗部分............................................................... 16 2.1 實驗流程.................................................................. 16 2.2 實驗藥品與溶劑............................................................ 16 2.3 儀器設備...................................................................19 2.4 化合物的合成與鑑定........................................................ 21 2.4.1 化合物 {μ-3,6-(OSitBuPh2)2-bdt}Fe2(CO)6 (1) ........................... 22 2.4.2 化合物 [K][{μ,k2-3,6-(OSitBuPh2)2-bdt}Fe2(CO)5(PPh2)] ([K][2]) ........ 23 2.4.3 化合物 [TBA][{μ,k2-3,6-(OSitBuPh2)2-bdt}Fe2(CO)5(PPh2)] ([TBA][2])..... 24 2.4.4 化合物 [PPN][{μ,k2-3,6-(OSitBuPh2)2-bdt}Fe2(CO)5(PPh2)] ([PPN][2])......26 2.4.5 化合物 {μ,k2-3,6-(OSitBuPh2)2-bdt}Fe2(CO)5(PPh2)(μ-H) (3) ............ 27 2.5 電化學分析實驗............................................................ 28 2.5.1 循環伏安法 (Cyclic Voltammetry) ........................................ 28 2.5.2 定電位電解法 (Controlled Potential Electrolysis) ....................... 28 2.6 密度泛函理論計算 (DFT) ................................................... 28 2.7 光催化實驗................................................................ 29 第三章 結果與討論............................................................. 33 3.1 化合物的合成與鑑定........................................................ 33 3.2 化合物 a- 與 2- 氧化態穩定性之比較 ....................................... 43 3.3 紫外光-可見光光譜分析及密度泛函理論計算 (DFT) 討論 ....................... 47 3.4 光催化產氫實驗............................................................ 51 3.4.1 光催化產氫機制討論...................................................... 51 3.4.2 光催化產氫實驗設計...................................................... 55 3.5 電化學光催化產氫實驗...................................................... 60 3.6 催化效果討論與文獻比較.................................................... 62 第四章 結論................................................................... 64 參考文獻...................................................................... 65 附錄.......................................................................... A1

    1. Tard, C.; Pickett, C. J., Chem. Rev. 2009, 109, 2245-2274.
    2. Simmons, T. R.; Berggren, G.; Bacchi, M.; Fontecave, M.; Artero, V., Coord. Chem. Rev. 2014, 270, 127-150.
    3. Sanchez, M. L. K.; Sommer, C.; Reijerse, E.; Birrell, J. A.; Lubitz, W.; Dyer, R. B., J. Am. Chem. Soc. 2019, 141, 16064-16070.
    4. Barton, B. E.; Rauchfuss, T. B., Inorg. Chem. 2008, 47, 2261-2263.
    5. Camara, J. M.; Rauchfuss, T. B., J. Am. Chem. Soc. 2011, 133, 8098-8101.
    6. Hsieh, C. H.; Erdem, O. F.; Harman, S. D.; Singleton, M. L.; Reijerse, E.; Lubitz, W.; Popescu, C. V.; Reibenspies, J. H.; Brothers, S. M.; Hall, M. B.; Darensbourg, M. Y., J. Am. Chem. Soc. 2012, 134, 13089-13102.
    7. Olsen, M. T.; Rauchfuss, T. B.; Wilson, S. R., J. Am. Chem. Soc. 2010, 132, 17733-17740.
    8. Camara, J. M.; Rauchfuss, T. B., Nat. Chem. 2012, 4, 26-30.
    9. Liu, Y. C.; Tu, L. K.; Yen, T. H.; Lee, G. H.; Chiang, M. H., Dalton Trans. 2011, 40, 2528-2541.
    10. Liu, Y. C.; Yen, T. H.; Tseng, Y. J.; Hu, C. H.; Lee, G. H.; Chiang, M. H., Inorg. Chem. 2012, 51, 5997-5999.
    11. Liu, Y. C.; Chu, K. T.; Jhang, R. L.; Lee, G. H.; Chiang, M. H., Chem. Commun. 2013, 49, 4743-4745.
    12. Chu, K. T.; Liu, Y. C.; Huang, Y. L.; Hsu, C. H.; Lee, G. H.; Chiang, M. H., Chem.-Eur. J. 2015, 21, 10978-10982.
    13. Chu, K. T.; Liu, Y. C.; Chung, M. W.; Poerwoprajitno, A. R.; Lee, G. H.; Chiang, M. H., Inorg. Chem. 2018, 57, 7620-7630.
    14. Teets, T. S.; Nocera, D. G., Chem. Commun. 2011, 47, 9268-9274. 66
    15. Na, Y.; Wang, M.; Pan, J. X.; Zhang, P.; Akermark, B.; Sun, L. C., Inorg. Chem. 2008, 47, 2805-2810.
    16. Li, R. X.; Liu, X. F.; Liu, T.; Yin, Y. B.; Zhou, Y.; Mei, S. K.; Yan, J., Electrochim. Acta 2017, 237, 207-216.
    17. Corredor, J.; Harankahage, D.; Gloaguen, F.; Rivero, M. J.; Zamkov, M.; Ortiz, I., Chemosphere 2021, 278, 130485.
    18. Huckaba, A. J.; Shirley, H.; Lamb, R. W.; Guertin, S.; Autry, S.; Cheema, H.; Talukdar, K.; Jones, T.; Jurss, J. W.; Dass, A.; Hammer, N. I.; Schmehl, R. H.; Webster, C. E.; Delcamp, J. H., ACS Catal. 2018, 8, 4838-4847.
    19. Chambers, M. B.; Kurtz, D. A.; Pitman, C. L.; Brennaman, M. K.; Miller, A. J. M., J. Am. Chem. Soc. 2016, 138, 13509-13512.
    20. Whittemore, T. J.; Xue, C.; Huang, J.; Gallucci, J. C.; Turro, C., Nat. Chem. 2020, 12, 180-+.
    21. Wang, W. G.; Rauchfuss, T. B.; Bertini, L.; Zampella, G., J. Am. Chem. Soc. 2012, 134, 4525-4528.
    22. Goy, R.; Bertini, L.; Rudolph, T.; Lin, S.; Schulz, M.; Zampella, G.; Dietzek, B.; Schacher, F. H.; De Gioia, L.; Sakai, K.; Weigand, W., Chem.-Eur. J. 2017, 23, 334-345.
    23. Raamat, E.; Kaupmees, K.; Ovsjannikov, G.; Trummal, A.; Kutt, A.; Saame, J.; Koppel, I.; Kaljurand, I.; Lipping, L.; Rodima, T.; Pihl, V.; Koppel, I. A.; Leito, I., J. Phys. Org. Chem. 2013, 26, 162-170.
    24. Chu, K. T.; Liu, Y. C.; Huang, Y. L.; Lee, G. H.; Tseng, M. C.; Chiang, M. H., Chem.-Eur. J. 2015, 21, 6852-6861.
    25. Duggan, D. M.; Hendrickson, D. N., Inorg. Chem. 1975, 14, 955-970.
    26. Yakelis, N. A.; Bergman, R. G., Organometallics 2005, 24, 3579-3581.
    27. Chen, J. Z.; Vannucci, A. K.; Mebi, C. A.; Okumura, N.; Borowski, S. C.; Swenson, M.; Lockett, L. T.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L., Organometallics 2010, 29, 5330-5340.
    28. Alvarez, C. M.; Garcia, M. E.; Ruiz, M. A.; Connelly, N. G., Organometallics 2004, 23, 4750-4758.
    29. Connelly, N. G.; Geiger, W. E., Chem. Rev. 1996, 96, 877-910.
    30. Paul, A.; Borrelli, R.; Bouyanfif, H.; Gottis, S.; Sauvage, F., ACS Omega 2019, 4, 14780-14789.
    31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.: Gaussian 09. Revision A.02 ed.; Gaussian: Wallingford, CT, 2019.

    無法下載圖示 全文公開日期 2031/08/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE