簡易檢索 / 詳目顯示

研究生: 李奕陞
Yi-Sheng Lee
論文名稱: 履帶車多感測器定位方法之研究
Multi-Sensors Positioning Method for Tracked Vehicle
指導教授: 黃緒哲
Shiuh-Jer Huang
口試委員: 周瑞仁
Jui-Jen Chou
陳亮光
Liang-kuang Chen
黃緒哲
Shiuh-Jer Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 95
中文關鍵詞: 履帶車里程計擴展型卡爾曼濾波感測器融合
外文關鍵詞: Tracked Vehicle, odometry, Extended Kalman Filter, Sensor fusion
相關次數: 點閱:338下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用遠端遙控履帶車進行定位精確度的分析與討論,履帶車上整合霍爾感測器、ZED雙目相機、慣性量測元件以及RTK-GPS。因此履帶車共有四個定位系統: 馬達里程計、影像里程計、感測器融合以及RTK-GPS。感測器融合是利用擴展型卡爾曼濾波將馬達里程計、影像里程計與慣性量測元件進行融合。由於RTK-GPS具備穩定的公分級定位能力,因此在本研究中被視為定位之參考值。本研究有兩個討論主題: 一為可否經由履帶車運動學得到較佳的馬達里程計性能表現,二為感測器融合能否解決履帶車定位精確度不佳的問題。本研究是透過整合一台以Nvidia Jetson TX2與Arduino Mega2560作為控制與運算核心的履帶車,實驗場地設置在校園大樓之屋頂,透過所設計之實驗對履帶車之移動進行定位精確度的研究與討論。


    This research investigate the problem of vehicle positioning accuracy based on a remote-control tracked vehicle. A Hall sensor, a ZED stereo camera, an inertial measurement unit and RTK-GPS are integrated on the tracked vehicle. The Nvidia Jetson TX2 and Arduino Mega 2560 are integrated as the control kernel of the tracked vehicle. Extended Kalman Filter was used to fuse the signals of motor odometry, visual odometry and inertial measurement unit. Since RTK-GPS has stable and centimeter-grade positioning capabilities, it is used as the reference for positioning system. Two main topics are discussed in this research. One is whether the motor odometry can get better performance by using tracked vehicle kinematics. The other is whether the sensor fusion can solve the problem of poor positioning accuracy for tracked vehicle system. Due to the GPS signal sheltering problem, the experiment site was chosen on the roof of the campus building. The motion positioning accuracy of tracked vehicle system is investigated based on designed experiments. The experiment result shows that the EKF can improve the positioning accuracy from 4.52m to 0.57m, respect to the motor odometry.

    摘要 i Abstract ii 誌謝 iii 第一章 緒論 - 1 - 1.1 研究背景與動機 - 1 - 1.2 文獻回顧 - 3 - 1.2.1 履帶車 - 3 - 1.2.2 里程計 - 5 - 1.3 論文架構 - 7 - 第二章 系統架構 - 8 - 2.1 硬體架構 - 10 - 2.1.1履帶車車架 - 11 - 2.1.2 感測器 - 12 - 2.1.3控制與處理單元 - 15 - 2.1.4馬達驅動單元 - 17 - 2.2 軟體架構 - 20 - 2.2.1履帶車端軟體 - 21 - 2.2.2遠端遙控 - 24 - 第三章 履帶車控制與運動學 - 25 - 3.1 馬達轉速控制 - 25 - 3.2 運動學 - 26 - 第四章 里程計 - 34 - 4.1. 馬達里程計 - 34 - 4.2. 影像里程計 - 37 - 4.3. RTK-GPS - 41 - 第五章 感測器融合 - 49 - 第六章 實驗結果與討論 - 56 - 6.1. 實驗設定與場地 - 56 - 6.2. 實驗一,馬達轉速控制實驗 - 58 - 6.3. 實驗二,轉向效率指數實驗 - 68 - 6.4. 實驗三,運動學差異實驗 - 71 - 6.5. 實驗四,多感測器融合實驗 - 73 - 第七章 結論與未來展望 - 76 - 7.1. 結論 - 76 - 7.2. 未來展望 - 77 - 參考文獻 - 78 - 附錄 - 84 -

    【1】 MARKETANDMARKETS, Automated Guided Vehicle Market by Type (Tow Vehicles, Unit Load Carriers, Forklift Trucks, Assembly Line Vehicles), Navigation Technology (Laser Guidance, Vision Guidance), Application, Industry, and Geography - Global Forecast to 2024, Retrieved June 5, 2020, from https://www.marketsandmarkets.com/Market-Reports/automated-guided-vehicle-market-27462395.html

    【2】 MARKETANDMARKETS, Unmanned Ground Vehicles (UGV) Market by Application (Military (ISR, EOD, Combat Support, Transportation), Commercial (Firefighting, CBRN, Physical Security, Oil & Gas)), Mobility, Size, System, Mode of Operation, and Region - Global Forecast to 2025, Retrieved June 5, 2020, from https://www.marketsandmarkets.com/Market-Reports/unmanned-ground-vehicles-market-72041795.html

    【3】 Scaled Robotics, Scaled Robotics: Robotic Construction, Retrieved June 5, 2020, from https://www.scaledrobotics.com/

    【4】 Wikipedia, Continuous Track, Retrieved June 5, 2020, from https://en.wikipedia.org/wiki/Continuous_track

    【5】 R. Gonzalez, F. Rodriguez, and J. L. Guzman, Autonomous Tracked Robots in Planar Off-Road Conditions. Modelling, Localization, and Motion Control, vol. 122, Springer, 2014.

    【6】 Intorobotics, Wheels vs Continuous Tracks: Advantages and Disadvantages, Retrieved June 5, 2020, from https://www.intorobotics.com/wheels-vs-continuous-tracks-advantages-disadvantages/

    【7】 Wikipedia, Odometry, Retrieved June 6, 2020, from https://en.wikipedia.org/wiki/Odometry

    【8】 Wikipedia, Visual Odometry, Retrived June 6, 2020, from https://en.wikipedia.org/wiki/Visual_odometry

    【9】 Bobkov, V.A., Kudryashov, A.P., Mel’man, S.V. et al. Autonomous Underwater Navigation with 3D Environment Modeling Using Stereo Images. Gyroscopy Navig. 9, 67–75 (2018).

    【10】 C. Fu, A. Carrio and P. Campoy, "Efficient visual odometry and mapping for Unmanned Aerial Vehicle using ARM-based stereo vision pre-processing system," 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 2015, pp. 957-962, doi: 10.1109/ICUAS.2015.7152384.

    【11】 A. Howard, "Real-time stereo visual odometry for autonomous ground vehicles," 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008, pp. 3946-3952, doi: 10.1109/IROS.2008.4651147.

    【12】 Aqel M. O. A., Marhaban M. H., Saripan M. I. and Ismail N. B. 2016 Review of visual odometry: types, approaches, challenges, and applications SpringerPlus 5 1897

    【13】 Martínez, J. L., Mandow, A., Morales, J., Pedraza, S., & García-Cerezo, A. (2005). Approximating Kinematics for Tracked Mobile Robots. The International Journal of Robotics Research, 24(10), 867–878.

    【14】 J. L. Martinez, A. Mandow, J. Morales, A. Garcia-Cerezo and S. Pedraza, "Kinematic modelling of tracked vehicles by experimental identification," 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 2004, pp.1487-1492 vol.2, doi: 10.1109/IROS.2004.1389606.

    【15】 Sparkfun, SparkFun 9DoF Razor IMU M0, Retrieved June 6, 2020, from https://www.sparkfun.com/products/14001

    【16】 STEREOLABS, ZED Stereo Camera, Retrieved June 6, 2020, from https://www.stereolabs.com/zed/

    【17】 Swift Navigation, Piksi User Getting Started Guide, Retrieved June 6, 2020, from https://docs.swiftnav.com/wiki/Piksi_User_Getting_Started_Guide

    【18】 Nvidia, Harness AI at the Edge with the Jetson TX2 Developer Kit, Retrieved June 6, 2020, from https://developer.nvidia.com/embedded/jetson-tx2-developer-kit

    【19】 Arduino, Arduino Mega 2560 Rev3, Retrieved June 6, 2020, from https://store.arduino.cc/usa/mega-2560-r3

    【20】 Open Source Robotic Foundation, Open Robotics, Retrieved June 6, 2020, from http://www.osrfoundation.org/

    【21】 ROS.org | Powering the world's robots, ROS Kinetic Kame, Retrieved June 6, 2020, from http://wiki.ros.org/kinetic

    【22】 Github, ros-drivers/rosserial, Retrieved November 3, 2019, from https://github.com/ros-drivers/rosserial

    【23】 Github, sterolabs/zed-ros-wrapper, Retrieved July 25, 2019, from https://github.com/stereolabs/zed-ros-wrapper

    【24】 Github, KristofRobot/razor_imu_9dof, Retrieved October 15, 2019, from https://github.com/KristofRobot/razor_imu_9dof

    【25】 Github, PaulBouchier/swiftnav_piksi, Retrieved October 20, 2019, from https://github.com/PaulBouchier/swiftnav_piksi

    【26】 Github, ros-planning/navigation, Retrieved April 10, 2020 from https://github.com/ros-planning/navigation/tree/kinetic-devel

    【27】 Wikipedia, PID Controller, Retrieved November 15, 2019, from https://en.wikipedia.org/wiki/PID_controller

    【28】 Shamah, Benjamin. “Experimental Comparison of Skid Steering Vs. Explicit Steering for a Wheeled Mobile Robot.” (1999).

    【29】 E.Olson, " A Primer on Odometry and Motor Control", December 2004.

    【30】 Borenstein, J. and Feng, L. “UMBmark - A method for Measuring, Comparing, and Correcting Dead-reckoning Errors in Mobile Robots.”, Technical Report UMMEAM-94-22, December 1994, University of Michigan

    【31】 Kok Seng Chong and L. Kleeman, "Accurate odometry and error modelling for a mobile robot," Proceedings of International Conference on Robotics and Automation, Albuquerque, NM, USA, 1997, pp. 2783-2788 vol.4, doi: 10.1109/ROBOT.1997.606708.

    【32】 NASA Jet Propulsion Laboratory, FLIGHT PROJECTS-MARS SCIENCE LABORATORY, Retrieved June 8, 2020, from
    https://www-robotics.jpl.nasa.gov/projects/MSL.cfm?Project=3

    【33】 Aqel, M.O.A., Marhaban, M.H., Saripan, M.I. et al. Review of visual odometry: types, approaches, challenges, and applications. SpringerPlus 5, 1897 (2016).

    【34】 University of Zurich, Tutorial on Visual Odometry , Retrieved June 8, 2020, from http://mrsl.grasp.upenn.edu/loiannog/tutorial_ICRA2016/VO_Tutorial.pdf

    【35】 A. Howard, "Real-time stereo visual odometry for autonomous ground vehicles," 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008, pp. 3946-3952, doi: 10.1109/IROS.2008.4651147.

    【36】 M. Persson, T. Piccini, M. Felsberg and R. Mester, "Robust stereo visual odometry from monocular techniques," 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, ROK, 2015, pp. 686-691, doi: 10.1109/IVS.2015.7225764.

    【37】 Harris Corner Detection, Retrieved June 8, 2020, from https://www.itread01.com/content/1546573168.html

    【38】 林宗翰, “電腦視覺與應用上課講義” ,國立台灣科技大學色彩與照明科技研究所

    【39】 Chien, Johnny. (2016). 淺談基礎矩陣、本質矩陣與相機移動 Beginner’s Guide to Fundamental Matrix, Essential Matrix and Camera Motion Recovery, Auckland University of Technology Department of Electrical and Electronic Engineering, from

    【40】 Tradacete Miguel, Saez Alvaro, Arango Felipe, Gómez Huélamo Carlos, Revenga Pedro, Barea Rafael, López-Guillén Elena, Bergasa Luis. (2019). Positioning System for an Electric Autonomous Vehicle Based on the Fusion of Multi-GNSS RTK and Odometry by Using an Extented Kalman Filter: Proceedings of the 19th International Workshop of Physical Agents (WAF 2018), November 22-23, 2018, Madrid, Spain. 10.1007/978-3-319-99885-5_2.

    【41】 Wikipedia, Global Positioning System, Retrieved June 10, 2020, from https://en.wikipedia.org/wiki/Global_Positioning_System

    【42】 Wikipedia, BeiDou, Retrieved June 10, 2020, from https://en.wikipedia.org/wiki/BeiDou

    【43】 姜嘉瑞,GPS 與INS 整合之三維定位系統研究,碩士論文,國立臺灣工業技術學院機械工程技術研究所,台灣,1997

    【44】 I. A. Getting, "Perspective/navigation-The Global Positioning System," in IEEE Spectrum, vol. 30, no. 12, pp. 36-38, Dec. 1993, doi: 10.1109/6.272176.

    【45】 冨永 貴樹,RTK-GPS 測位計算アルゴリズム,東京海洋大学,2003

    【46】 薛詩瀚,小型電動車可行駛區域搜尋與定位,碩士論文,國立台灣科技大學電機工程所,台灣,2019

    【47】 Wikipedia, Extended Kalman Filter, Retrieved March 20, 2020, from https://en.wikipedia.org/wiki/Extended_Kalman_filter

    【48】 Wikipedia, Kalman Filter, Retrieved March 20, 2020, from https://en.wikipedia.org/wiki/Kalman_filter

    【49】 Introduction to Artificial Intelligence, Retrieved June 13, 2020, from http://www.ncheney.com/teaching/ai_slides/cocs4550_lecture15_kalmanFilters.pdf

    【50】 Object Tracking: Kalman Filter with Ease, Retrieved June 13, 2020, from https://www.codeproject.com/Articles/865935/Object-Tracking-Kalman-Filter-with-Ease

    無法下載圖示 全文公開日期 2025/07/13 (校內網路)
    全文公開日期 2025/07/13 (校外網路)
    全文公開日期 2025/07/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE