簡易檢索 / 詳目顯示

研究生: 康勳杰
Xin-Jie Kang
論文名稱: 超音波駐波與聲射流引致之微粒凝聚與流動形態
Particle Aggregation and Streaming Flow Patterns Induced by Ultrasonic Standing Wave and Acoustic Streaming
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 陳品銓
Pin-Chuan Chen
劉孟昆
Meng-Kun Liu
溫琮毅
Tsrong-Yi Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 111
中文關鍵詞: 超音波駐波微粒操控微粒影像測速儀
外文關鍵詞: Ultrasonic Standing Wave, Particle Manipulation, Particle Image Velocity
相關次數: 點閱:290下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討由壓電元件做為振動源在毫米尺度模型內產生超音駐波
    (ultrasonic standing wave, USW)來凝聚溶液中微粒之現象,並採用流場可視化
    (Flow Visualization)與微粒影像測速儀(Particle Image Velocimetry)技術觀察在共
    振腔室內超音波駐波現象,以及超音波駐波與聲射流流動之交互作用。
    本研究中使用阻抗分析儀測得壓電片的共振頻率,並以波形產生器設定驅動頻率、電壓、與波形,並以功率放大器將振幅放大以驅動壓電片,透過超音波傳導膠將超音波導入壓克力製模型以產生駐波。流場可視化與微粒影像測速儀實驗則以展開之雷射光頁照射模型內部,使用sCMOS 高速攝影機拍攝腔室流場流動情形進行分析。實驗中使用粒徑為5 ~ 18 微米之聚醯胺(Polyamide)與聚苯乙烯(Polystyrene)微粒做為攝影機的循跡微粒,得到腔室內超音波駐波與聲射流間的交互作用關係,並測試於0.8~2MHz 中頻率與微粒聚集效率之關係,探討微粒與水分離的效果。
    實驗結果顯示成功的產生出超音波駐波的現象,其實際駐波波長與理論波長間誤差不超過6%;超音波駐波現象產生同時伴隨聲射流流動,在相同驅動頻率下,聲學控制能力是18μm>10μm>5μm。在0.847、1.016、1.355、1.863、2.032MHz 之測試條件下,18μm 聚集效率皆大於10μm。不論在何種驅動頻率下,聲射流在開啟壓電片時便開始產生,影響腔室內部流場,使流體產生流動,微粒因而開始移動。在10μm、18μm 驅動頻率為0.847、1.863、2.032MHz 下,超音波駐波與聲射流同時發生且互不干擾。此項結果顯示未來可結合流道設計穩定其流動情形,進而用以收集微粒。


    In this study, ultrasonic standing waves (USW) are generated using the
    piezoelectric plate as a vibration source in a millimeter-scale chamber to agglomerate
    the particles in the suspension solution, and the interaction between USW and induced
    acoustic streaming flow patterns is studied by Flow Visualization (FV) and Particle
    Image velocimetry (PIV).
    The driving oscillation frequency is set to the natural frequency of the piezoelectric plate measured by an impedance analyzer. Driving parameters including frequency, voltage and waveform are set to the waveform generator and amplified by a power amplifier to enlarge the amplitude of the driving signal. The oscillation of the
    piezoelectric plate is conducted to the acrylic resonated chamber by the ultrasonic
    coupling gel for the experiments. FV and PIV experiments are performed using the laser light sheet as illumination and the flow patterns are recorded by a high-speed sCMOS camera. There are 3 different tracer particles (polyamide and polystyrene particles, 5 ~18μm) used as the tracers of the flow to investigate the interaction between USW and acoustic streaming. Relationships of the driving frequency(0.8~2MHz) to the particle aggregate efficiency are investigated.
    Experimental results show that the ultrasonic standing wave is successfully
    generated, and the error between the standing wavelength in the theory and in the
    experiment does not exceed 6%. The ultrasonic standing waves is accompanied by the
    acoustic streaming flow, and the acoustic control capability of the acoustic radiation
    force of particles in different diameters is 18μm>10μm>5μm. Within the aggregation
    efficiency range of 0.847,1.016,1.355,1.863 to 2.032 MHz, the aggregation efficiency
    of 18μm particle are all greater than the 10μm one. With all driving frequencies it is
    found that the acoustic streaming flow starts as the oscillation is turned on and affecting the flow patterns immediately.At driving frequencies of 0.847,1.863,2.032MHz for 10μm and 18μm particles, the acoustic streaming flow does not interfere with USW and both effects coexist. This finding suggests potential applications of combining both phenomena for better collection of particles.

    目錄 摘要 Abstract 致謝 目錄 符號索引 圖表目錄 第 1 章 緒論 1.1 介紹 1.2 文獻回顧 1.2.1 超音波駐波(Ultrasound Standing Wave) 1.2.1.1 超音駐波共振腔室之設置考量 1.2.1.2 超音波駐波的應用 1.2.2 聲射流(Acoustic Streaming Flow) 1.2.3 聲場與流場耦合計算模擬 1.2.4 小結 1.3 研究目的 1.4 論文架構 第 2 章 實驗原理與方法 2.1 實驗原理 2.1.1 超音波駐波原理 2.1.2 聲射流原理 2.1.3 壓電片工作原理 2.1.4 微粒影像測速儀工作原理 2.2 實驗方法 2.2.1 共振腔室 2.2.2 溶液配置 2.2.3 阻抗分析 2.2.4 壓電片設置 2.2.5 超音波駐波可視化實驗 2.2.5.1 超音波駐波可視化實驗設置 2.2.5.2 雷射光頁設置 2.2.5.3 攝影機參數設置 2.2.5.4 實驗步驟流程 2.2.6 影像處理 第 3 章 結果與討論 3.1 超音波駐波波長與理論計算之驗證 3.2 不同粒徑下整體流場結果 3.3 不同頻率下整體流場結果 3.4 不同平面流場觀測 第 4 章 結論與未來建議 4.1 結論 4.2 建議及未來工作 參考文獻

    [1] I. de Godos et al., "Coagulation/flocculation-based removal of algal-bacterial
    biomass from piggery wastewater treatment," Bioresour Technol, vol. 102, no.
    2, pp. 923-7, Jan 2011.
    [2] M. Vinatoru, "An overview of the ultrasonically assisted extraction of
    bioactive principles from herbs," 2001.
    [3] S. Veillet, V. Tomao, and F. Chemat, "Ultrasound assisted maceration: An
    original procedure for direct aromatisation of olive oil with basil," Food
    Chemistry, vol. 123, no. 3, pp. 905-911, 2010.
    [4] F. J. Trujillo, P. Juliano, G. Barbosa-Canovas, and K. Knoerzer, "Separation of
    suspensions and emulsions via ultrasonic standing waves - a review," Ultrason
    Sonochem, vol. 21, no. 6, pp. 2151-64, Nov 2014.
    [5] E.-H. B. E. Molina Grimaa, F.G. Acie´n Ferna´ndeza, and Y. C. A. Robles
    Medinaa, *, "Recovery of microalgal biomass and metabolites_process
    options and economic," 2002.
    [6] M. Settnes and H. Bruus, "Forces acting on a small particle in an acoustical
    field in a viscous fluid," Phys Rev E Stat Nonlin Soft Matter Phys, vol. 85, no.
    1 Pt 2, p. 016327, Jan 2012.
    [7] A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, "Acoustofluidics 5:
    Building microfluidic acoustic resonators," Lab Chip, vol. 12, no. 4, pp. 684-
    95, Feb 21 2012.
    [8] J. Dual and T. Schwarz, "Acoustofluidics 3: Continuum mechanics for
    ultrasonic particle manipulation," Lab Chip, vol. 12, no. 2, pp. 244-52, Jan 21
    2012.
    [9] T. Laurell, F. Petersson, and A. Nilsson, "Chip integrated strategies for
    acoustic separation and manipulation of cells and particles," Chem Soc Rev,
    vol. 36, no. 3, pp. 492-506, Mar 2007.
    [10] P. Glynne-Jones, R. J. Boltryk, and M. Hill, "Acoustofluidics 9: Modelling and
    applications of planar resonant devices for acoustic particle manipulation,"
    Lab on a Chip, vol. 12, no. 8, pp. 1417-1426, 2012.
    [11] W. T. C. Jeremy J. Hawkes, "Force field particle filter combining ultrasound
    standing waves and laminar flow," 2001.
    [12] F. Petersson, A. Nilsson, C. Holm, H. Jonsson, and T. Laurell, "Separation of
    lipids from blood utilizing ultrasonic standing waves in microfluidic
    channels," Analyst, vol. 129, no. 10, pp. 938-43, Oct 2004.
    35
    [13] F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, and T. Laurell, "Free flow
    acoustophoresis: microfluidic-based mode of particle and cell separation,"
    Analytical chemistry, vol. 79, no. 14, pp. 5117-5123, 2007.
    [14] W. A. v. S. Rouke Bosma*, Johannes Tramper and René H. Wijffels,
    "Ultrasound, a new separation technique to harvest microalgae," 2003.
    [15] F. J. Trujillo, S. Eberhardt, D. Moller, J. Dual, and K. Knoerzer, "Multiphysics
    modelling of the separation of suspended particles via frequency ramping of
    ultrasonic standing waves," Ultrason Sonochem, vol. 20, no. 2, pp. 655-66,
    Mar 2013.
    [16] J. D. Adams, P. Thevoz, H. Bruus, and H. T. Soh, "Integrated acoustic and
    magnetic separation in microfluidic channels," Appl Phys Lett, vol. 95, no. 25,
    p. 254103, Dec 21 2009.
    [17] G. Thalhammer, R. Steiger, M. Meinschad, M. Hill, S. Bernet, and M. Ritsch-
    Marte, "Combined acoustic and optical trapping," Biomedical optics express,
    vol. 2, no. 10, pp. 2859-2870, 2011.
    [18] D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, "A millisecond
    micromixer via single-bubble-based acoustic streaming," Lab Chip, vol. 9, no.
    18, pp. 2738-41, Sep 21 2009.
    [19] M. Ohlin, I. Iranmanesh, A. E. Christakou, and M. Wiklund, "Temperaturecontrolled
    MPa-pressure ultrasonic cell manipulation in a microfluidic chip,"
    Lab Chip, vol. 15, no. 16, pp. 3341-9, Aug 21 2015.
    [20] P. H. Huang et al., "A reliable and programmable acoustofluidic pump
    powered by oscillating sharp-edge structures," Lab Chip, vol. 14, no. 22, pp.
    4319-23, Nov 21 2014.
    [21] R. B. Peter Barkholt Muller, Mads Jakob Herring Jensenc and Henrik Bruus*,
    "A numerical study of microparticle acoustophoresis driven by acoustic,"
    2012.
    [22] P. B. Muller et al., "Ultrasound-induced acoustophoretic motion of
    microparticles in three dimensions," Phys Rev E Stat Nonlin Soft Matter Phys,
    vol. 88, no. 2, p. 023006, Aug 2013.
    [23] H. Bruus, "Acoustofluidics 2: perturbation theory and ultrasound resonance
    modes," Lab Chip, vol. 12, no. 1, pp. 20-8, Jan 07 2012.
    [24] H. Bruus, "Acoustofluidics 7: The acoustic radiation force on small particles,"
    Lab Chip, vol. 12, no. 6, pp. 1014-21, Mar 21 2012.
    [25] M. H. a. N. R.Harris, "Ultrasonic Microsystems for Bacterial Cell
    Manipulation," 2008.
    [26] M. Wiklund, R. Green, and M. Ohlin, "Acoustofluidics 14: Applications of
    acoustic streaming in microfluidic devices," Lab Chip, vol. 12, no. 14, pp.
    36
    2438-51, Jul 21 2012.
    [27] M. Jahanmiri, "Particle image velocimetry: Fundamentals and its
    applications," Chalmers University of Technology2011.
    [28] W. Thielicke and E. Stamhuis, "PIVlab–towards user-friendly, affordable and
    accurate digital particle image velocimetry in MATLAB," Journal of Open
    Research Software, vol. 2, no. 1, 2014.

    QR CODE