簡易檢索 / 詳目顯示

研究生: 陳弈瑀
Yi-Yu Chen
論文名稱: 數位離焦微粒循跡測速儀與數位同軸全像微粒循跡測速儀用於量測聲射微流體裝置之三維流場之性能比較
Performance Comparison of Digital Defocusing Micro-Particle Tracking Velocimetry and Digital In-Line Holographic Micro-Particle Tracking Velocimetry for Measuring Three-Dimensional Flow Fields of Acoustofluidic Devices
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 溫琮毅
Tsrong-Yi Wen
蔣雅郁
Ya-Yu Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 118
中文關鍵詞: 數位同軸全像顯微鏡微粒循跡測速儀聲射流離焦數位微粒影像測速儀微粒影像測速儀
外文關鍵詞: Digital In-line Holographic Microscopy, Particle Tracking Velocimetry, acoustic streaming, Defocusing Digital Particle Image Velocimetry, Particle Image Velocimetry
相關次數: 點閱:408下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在比較兩種三維微流場量測技術-數位離焦微粒影像測速儀 (Digital Defocusing Micro-Particle Tracking Velocimetry, DDμ-PTV) 與數位同軸全像微粒影像測速儀 (Digital In-Line Holographic Micro-Particle Tracking Velocimetry, DIHμ-PTV) 之性能表現。將兩系統建置於倒立式顯微鏡上,透過校正實驗比較兩者之三維重建位置不准度差異,並分別用以拍攝聲射微流體 (Acoustofluidics)之三維穩態射流渦漩影像,再以微粒循跡測速儀 (Particle Tracking Velocimetry, PTV)技術解析其流場並進行探討。對格點陣列校正片使用兩技術進行校正實驗之拍攝與分析結果顯示,使用DDμ-PTV技術與DIHμ-PTV技術可解析之流場體積分別為533 μm × 429 μm × 320 μm及561 μm × 451 μm × 720 μm。此結果顯示當觀測流場長寬大致相同時,DIHμ-PTV技術能解析較大深度範圍之流場。在三維位置不准度的分析結果顯示,DDμ-PTV技術優於光學像差未校正之DIHμ-PTV技術。使用DDμ-PTV與DIHμ-PTV技術的X、Y、Z重建位置不准度分別為0.32 μm、0.37 μm、5.28 μm,以及 2.58 μm、2.48 μm、16.83 μm。而在使用上述兩種技術量測以三角形微結構激發之聲射微流體之三維流場時,PTV循跡分析結果顯示,在分析相同1200張之影像時,DDμ-PTV技術可接起281條微粒軌跡,而DIHμ-PTV技術可以接起311條微粒軌跡。三維速度場分析結果則顯示,DDμ-PTV技術所測得三角形尖端附近的微粒速度約為150 μm/s ~ 220 μm/s,而遠離尖端之微粒速度約為20 μm/s;使用DIHμ-PTV技術測得之微粒速度則分別約為300 μm/s ~ 420 μm/s與40 μm/s。此結果顯示DIHμ-PTV技術因為入光量高,可以使用較短的曝光時間成像因此有較大的速度動態量測範圍。


    The purpose of the study is to compare the performances of two volumetric methods for micro-scale flow field measurement - digital defocusing micro-particle tracking velocimetry (DDμ-PTV) and digital in-line holographic micro-particle tracking velocimetry (DIHμ-PTV). The two systems were set up on an inverted microscope, and measurement uncertainties of the reconstructed positions for the two systems were compared through calibration experiments. The two techniques were then applied to measure the three-dimensional steady streaming vortical flows of an acoustofluidic device induced by a triangular micro-structure with particle tracking velocimetry (PTV) technique. The calibration experiment results performed and analyzed with the grid calibration target for both techniques show that the measurable range resolved by DDμ-PTV and DIHμ-PTV were 533 μm × 429 μm × 320 μm, and 561 μm × 451 μm × 720 μm, respectively. These indicates that when the measured flow fields are at approximately the same length and width, the DIHμ-PTV can resolve a larger range of depth position. The uncertainty analysis of the reconstructed 3-D positions shows that DDμ-PTV is better than DIHμ-PTV without correcting the optical abberations. The X, Y, and Z position uncertainties were 0.32 μm, 0.37 μm, and 5.28 μm for the DDμ-PTV and 2.58 μm, 2.48 μm, and 16.83 μm for DIHμ-PTV, respectively. When the two techniques were applied to measure the 3-D flow fields of the acoustofluidic device induced by a triangular structure, the tracking results of PTV show that for analyzing the 1200 images, DDμ-PTV can track 281 particle tracks while DIHμ-PTV can track 311 particle tracks. 3-D velocity field analysis results show that the velocity of particles measured using DDμ-PTV near the triangular tip is about 150 μm/s ~ 220 μm/s, while the velocity of particles far from the tip is about 20 μm/s, respectively. On the other hand, results with DIHμ-PTV were about 300 μm/s ~ 420 μm/s and less than 40 μm/s, respectively. These results show the DIHμ-PTV has larger velocity dynamic range because of the higher light input and shorter exposure time.

    摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 ix 表目錄 xv 第1章 第一章 緒論 1 1.1. 介紹 1 1.2. 文獻回顧 2 1.2.1. 光學影像流場量測技術 2 1.2.1.1. 微粒影像測速儀 (PIV) 2 1.2.1.2. 微粒循跡測速儀(PTV) 3 1.2.2. 離焦數位微粒影像測速儀 (DDPIV) 3 1.2.3. 數位同軸全像顯微技術(DIHM) 6 1.2.4. DDPIV與DIHM之比較 10 1.2.5. 聲射流的應用 11 1.3. 實驗目的 12 1.4. 論文架構 13 第2章 第二章 實驗原理與方法 14 2.1. 實驗原理 14 2.1.1. DDPIV光學投影原理 14 2.1.2. DIHM光學原理與光場重建 15 2.2. 實驗硬體設置 18 2.2.1. DDμ-PTV實驗架設 18 2.2.1.1. 倒立式顯微鏡設備 19 2.2.1.2. 光源 20 2.2.1.3. 相機 20 2.2.1.4. 三針孔多光譜濾鏡陣列片與物鏡 21 2.2.1.5. 校正設備 25 2.2.2. DIHμ-PTV實驗架設 28 2.2.2.1. 倒立式顯微鏡 29 2.2.2.2. 光源 30 2.2.2.3. 相機 31 2.2.2.4. 校正設備 31 2.2.3. 兩系統校正實驗操作流程 31 2.2.4. 校正實驗影像處理 34 2.2.5. 校正實驗之不准度分析 38 2.2.6. 微流道製作流程 39 2.2.7. 聲射流驅動裝置與循跡微粒 44 2.2.8. 實驗操作流程 47 2.2.9. 實驗影像處理 48 第3章 第三章 結果與討論 50 3.1. DDμ-PTV光學系統拍攝與分析結果 50 3.1.1. DDμ-PTV光學校正片影像拍攝結果 50 3.1.2. DDμ-PTV系統校正結果 53 3.1.3. DDμ-PTV之重建影像位置校正結果 56 3.1.4. DDμ-PTV之不准度分析結果 60 3.1.5. DDμ-PTV之微流道中微粒位置與循跡結果 62 3.2. DIHμ-PTV光學系統拍攝與分析結果 66 3.2.1. DIHμ-PTV光學校正片影像拍攝結果 66 3.2.2. DIHμ-PTV光學系統校正結果 71 3.2.3. DIHμ-PTV之重建影像位置之校正結果 74 3.2.4. DIHμ-PTV之不准度分析結果 87 3.2.5. DIHμ-PTV之微流道中微粒位置與循跡結果 89 3.3. 討論 94 第四章 結論與未來建議 97 4.1. 結論 97 4.2. 建議與未來工作 99 參考文獻 100

    [1] A. K. Prasad, "Stereoscopic particle image velocimetry," Experiments in fluids, vol. 29, no. 2, pp. 103-116, 2000.
    [2] K. D. Hinsch, "Holographic particle image velocimetry," Measurement Science and Technology, vol. 13, no. 7, p. R61, 2002.
    [3] F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, "Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows," Experiments in fluids, vol. 29, no. 1, pp. S078-S084, 2000.
    [4] N. P. van Hinsberg, I. Roisman, and C. Tropea, "Three-dimensional, three-component particle imageing using two optical aberrations and a single camera," in th International Symposium on Applications of Laser Techniques to Fluid Mechanics, July, 2008: Citeseer, pp. 7-10.
    [5] J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in fluids, vol. 25, no. 4, pp. 316-319, 1998.
    [6] R. Lindken, M. Rossi, S. Große, and J. Westerweel, "Micro-particle image velocimetry (µPIV): recent developments, applications, and guidelines," Lab on a Chip, vol. 9, no. 17, pp. 2551-2567, 2009.
    [7] D. Dabiri and C. Pecora, Particle tracking velocimetry. IOP Publishing Bristol, 2020.
    [8] Y.-C. Lei et al., "A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method," Experiments in fluids, vol. 53, no. 5, pp. 1251-1268, 2012.
    [9] C. Willert and M. Gharib, "Three-dimensional particle imaging with a single camera," Experiments in Fluids, vol. 12, no. 6, pp. 353-358, 1992.
    [10] J. Lu, F. Pereira, S. E. Fraser, and M. Gharib, "Three-dimensional real-time imaging of cardiac cell motions in living embryos," Journal of biomedical optics, vol. 13, no. 1, p. 014006, 2008.
    [11] S. Y. Yoon and K. C. Kim, "3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept," Measurement Science and Technology, vol. 17, no. 11, p. 2897, 2006.
    [12] K. C. Kim, "Advances and applications on micro-defocusing digital particle image velocimetry (μ-DDPIV) techniques for microfluidics," Journal of mechanical science and technology, vol. 26, no. 12, pp. 3769-3784, 2012.
    [13] W.-H. Tien, P. Kartes, T. Yamasaki, and D. Dabiri, "A color-coded backlighted defocusing digital particle image velocimetry system," Experiments in Fluids, vol. 44, no. 6, pp. 1015-1026, 2008.
    [14] W.-H. Tien, D. Dabiri, and J. R. Hove, "Color-coded three-dimensional micro Particle Tracking Velocimetry and application to micro accelerating micro-channel flow," in International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2012.
    [15] W. Tien, D. Dabiri, V. Lieu, and D. Schwartz, "Volumetric Velocity Measurements of an Acoustic Streaming Microeddy Array using Color-Coded Three-Dimensional Micro Particle Tracking Velocimetry," 2013.
    [16] 洪逸杰, "應用多光譜三維微粒循跡測速儀於具穩態射流之微流體裝置之三維流場量測," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2016. [Online]. Available: https://hdl.handle.net/11296/t5dc55
    [17] D. Gabor, "A new microscopic principle," nature, vol. 161, pp. 777-778, 1948.
    [18] J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Applied optics, vol. 45, no. 5, pp. 836-850, 2006.
    [19] J. L. de Almeida, E. Comunello, A. Sobieranski, A. M. da Rocha Fernandes, and G. S. Cardoso, "Twin-image suppression in digital in-line holography based on wave-front filtering," Pattern Analysis and Applications, vol. 24, no. 3, pp. 907-914, 2021.
    [20] T.-W. Su, L. Xue, and A. Ozcan, "High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories," Proceedings of the National Academy of Sciences, vol. 109, no. 40, pp. 16018-16022, 2012.
    [21] J. Sheng, E. Malkiel, and J. Katz, "Digital holographic microscope for measuring three-dimensional particle distributions and motions," Applied optics, vol. 45, no. 16, pp. 3893-3901, 2006.
    [22] M. Molaei and J. Sheng, "Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm," Optics express, vol. 22, no. 26, pp. 32119-32137, 2014.
    [23] T. Ooms, R. Lindken, and J. Westerweel, "Digital holographic microscopy applied to measurement of a flow in a T-shaped micromixer," Experiments in Fluids, vol. 47, no. 6, pp. 941-955, 2009.
    [24] Y.-S. Choi and S.-J. Lee, "Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy," Applied optics, vol. 48, no. 16, pp. 2983-2990, 2009.
    [25] 洪聖博, "數位同軸全像微粒循跡測速儀之研發與其於聲射微流體之應用," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/w7s6qf
    [26] 林孟樺, "由單一不對稱三角形結構誘發之聲射流流場分析," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/zzyacd

    QR CODE