簡易檢索 / 詳目顯示

研究生: 張格綸
Ko-Lun Chang
論文名稱: 實驗研究流經壁掛式有限長圓柱具不同尺寸圓蓋的流場
Experimental study on the flow field of a wall-mounted finite cylinder with a round cover cap having different sizes
指導教授: 林怡均
Yi-Jiun Lin
口試委員: 朱佳仁
none
陳明志
Ming-Jyh chern
田維欣
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 192
中文關鍵詞: 限長圓柱圓柱尾流質點影像速度儀下洗流流場
外文關鍵詞: Finite circular cylinder, Particle Image Velocimetry, Wake, Downwash flow, Flow field
相關次數: 點閱:296下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討壁掛式有限長圓柱具有不同尺寸圓蓋之周圍流場分佈, 實驗在直立式水洞中使用質點影像速度儀 (PIV) 進行速度場量測。 設置圓柱凸出於水洞測試區壁面, 圓柱直徑 (D) 為6.4 mm, 圓柱長度 (L) 為150 mm, 有限長圓柱展弦比 (AR) 為23.44。四種圓蓋尺寸分別為1D (6.4 mm)、 2D (12.8 mm)、 3D (19.2 mm)、 4D (25.6 mm),在圓柱的頂端分別安裝不同尺寸圓蓋, 實驗在每一個尺寸的圓蓋分別測試雷諾數 (Re)為250, 560與 1080。 三維的下洗流與卡曼渦流在靠近圓柱頂部發生交互作用, 實驗主要研究圓柱具有圓蓋的前端流場。 實驗數據拍攝所選取的範圍從圓柱前端 X/D = 2, 圓柱具有圓蓋的自由端到圓柱長中段 X/D = − 13 的位置。 流場由兩個主要觀測平面所建立, 分別為橫截面 ( X-Y 平面) 和剖面 ( Y-Z 平面), 在橫截面 ( X-Y 平面) 放大流經圓蓋前端區域的速度場, 觀測剖面 ( Y-Z 平面) 為數個不同觀測位置, 距離圓柱自由端不同遠近的位置。 實驗結果包括平均速度和紊流強度, 在觀測橫截面的速度結果中,隨著圓蓋尺寸增加而削弱 X 方向的速度。 X方向速度隨著離圓柱頂部距離增加而消失,在 Y 方向紊流強度介於近尾流區和遠尾流之間域有較高的數值。 在圓柱具有4D圓蓋,雷諾數為250和 560, 在圓蓋下方的近尾流區域有源點發生。


    The flow fields of a wall-mounted finite circular cylinder with a round cover cap having different sizes were studied experimentally in a vertical water tunnel by using Particle Image Velocimetry (PIV). A cylinder of the diameter (D) as 6.4 mm and the length (L) as 150 mm, giving the aspect ratio (AR) as 23.44, was mounted on the wall plane of the test section. Four round cover caps having the sizes of 1D (6.4 mm), 2D (12.8 mm), 3D (19.2 mm) and 4D (25.6 mm) were respectively mounted at the tip of the cylinder. Experiments were conducted for each cover cap size with Reynolds numbers as 250, 560 and 1080. This research studied the 3-dimensional downwash flow interacting with von Karman vortex near the tip of the cylinder. The experimental study focused on the flow fields around the tip of the cylinder with the cap. The range of experimental data was from the tip of the cylinder, X/D = 2, to the location of X/D = −13. The velocity fields of the wake flow were observed in two main planes (the transverse section, X-Y, plane and the cross section, Y-Z, plane). The local amplified velocity fields of the upstream flow passing the cover cap were observed on the transverse section, X-Y, plane. The cross section planes were observed at several different locations, which were near and away from the tip of the cylinder. The flow fields on the transverse section plane show that the X velocity component decreases in both the near and far wake regions close to the cylinder tip as the cap size increases. Accompanying the X velocity component disappearing away from the cylinder tip, high turbulence intensity of the Y velocity component takes place around the border region between the near and far wake regions. A singular source point was found in the wake region near the cap trailing edge for the cases with a 4D size cap and Reynolds numbers as 250 and 560.

    目錄 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1 緒論1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 展弦比(aspect ratio) . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 渦流型態與雷諾數(Reynolds number) . . . . . . . . . . . . . 4 1.2.3 邊界層厚度(boundary layer thickness) . . . . . . . . . . . . 7 1.2.4 渦流放逸頻率(vortex shedding frequency) . . . . . . . . . . 8 1.3 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 實驗設置與觀測方法11 2.1 實驗設備設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 實驗座標軸. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 直立式水洞. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.3 具有圓蓋之有限長圓柱. . . . . . . . . . . . . . . . . . . . . 12 2.1.4 氬離子雷射. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.5 鏈式移動平台. . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.6 光頁產生鏡頭和反射鏡頭. . . . . . . . . . . . . . . . . . . . 12 2.1.7 質點特性分析. . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 量測技術. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 流場可視化. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 質點影像速度儀(Particle Image Velocimetry) . . . . . . . . . 15 2.3 實驗步驟. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 流體流經圓柱頂部具有不同大小圓蓋實驗結果19 3.1 可視化結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 平均速度分佈與流線. . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 觀測X-Y 平面平均速度分佈與流線. . . . . . . . . . . . . . . 20 3.2.2 觀測Y-Z 平面平均速度分佈. . . . . . . . . . . . . . . . . . 23 3.3 紊流強度(turbulent intensity) . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 觀測X-Y 平面紊流強度. . . . . . . . . . . . . . . . . . . . . 27 3.3.2 觀測Y-Z 平面紊流強度. . . . . . . . . . . . . . . . . . . . . 30 3.4 圓蓋自由端速度分佈. . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 結論37 4.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 建議與未來工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 參考文獻41

    [1] Abernathy FH, Kronauer RE. The formation of vortex streets. Journal of Fluid Mechanics 1962; 13(01):1–20.
    [2] Kawamura T, Hiwada M, Hibino T, Mabuchi I, Kumada M. Flow around a finite circular cylinder on a flat plate: Cylinder height greater than turbulent boundary layer thickness. Bulletin of JSME 1984; 27(232):2142–2151.
    [3] Sumner D. Flow above the free end of a surface-mounted finite-height circular cylinder: a review. Journal of Fluids and Structures 2013; 43:41–63.
    [4] Saiki E, Biringen S. Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. Journal of Computational Physics 1996; 123(2):450–465.
    [5] Yang SS. Experimental study of a horizontal round tube jet in a vertical crossflow at different momentum flux ratios. Master’s Thesis, National Taiwan University of Science and Technology 2011.
    [6] Pattenden R, Bressloff N, Turnock S, Zhang X. Unsteady simulations of the flow around a short surface-mounted cylinder. International journal for numerical ethods in fluids 2007; 53(6):895–914.
    [7] Rostamy N, Sumner D, Bergstrom D, Bugg J. Local flow field of a surface mounted finite circular cylinder. Journal of Fluids and Structures 2012; 34:105–122.
    [8] Adaramola M, Akinlade O, Sumner D, Bergstrom D, Schenstead A. Turbulent
    wake of a finite circular cylinder of small aspect ratio. Journal of Fluids and Structures 2006; 22(6):919–928.
    [9] Lan JR. An experimental study on the vertical incompressible flow past a finite-length horizontal cylinder with a cap at the tip. Master’s Thesis, National Taiwan University of Science and Technology 2014.
    [10] Stevanus W, Lin YJP. An experimental study on the vertical flow past a finite-length horizontal cylinder at low reynolds numbers. Applied Mechanics and Materials, vol. 493, Trans Tech Publ, 2014; 68–73.
    [11] Lienhard JH. Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders. Technical Extension Service, Washington State University, 1966.
    [12] Nishioka M, Sato H. Measurements of velocity distributions in the wake of a circular cylinder at low reynolds numbers. Journal of Fluid Mechanics 1974; 65(01):97–112.
    [13] Adaramola M, Sumner D, Bergstrom D. Effect of velocity ratio on the streamwise vortex structures in the wake of a stack. Journal of Fluids and Structures 2010; 26(1):1–18.
    [14] Lai YW. Experimental study on a round tube jet in a vertical water tunnel. Master’s Thesis, National Taiwan University of Science and Technology 2010.
    [15] Chou YS. PIV analysis on wake flow of a finite-length cylinder with and without a cap at the tip. Master’s Thesis, National Taiwan University of Science and Technology 2015.
    [16] Hain R, Kぴahler CJ, Michaelis D. Tomographic and time resolved piv easurements
    on a finite cylinder mounted on a flat plate. Experiments in fluids 2008; 45(4):715–724.
    [17] Williamson C, Roshko A. Vortex formation in the wake of an oscillating cylinder. Journal of fluids and structures 1988; 2(4):355–381.
    [18] White FM. Viscous fluid flow, vol. 3. McGraw-Hill New York, 2006.
    [19] Park CW, Lee SJ. Free end effects on the near wake flow structure behind a finite circular cylinder. Journal of Wind Engineering and Industrial Aerody namics 2000; 8(2):231–246.
    [20] Sario˘glu M, Yavuz T. Vortex shedding from circular and rectangular cylinders
    placed horizontally in a turbulent flow. Turkish Journal of Engineering and
    Environmental Sciences 2000; 24(4):217–228.
    [21] Fox T, West G. Fluid-induced loading of cantilevered circular cylinders in a low turbulence uniform flow. part 1: Mean loading with aspect ratios in the range 4 to 30. Journal of Fluids and Structures 1993; 7(1):1–14.
    [22] Flagan RC, Seinfeld JH. Fundamentals of air pollution engineering. Courier Corporation, 2013.
    [23] Crowe C, Gore R, Troutt T. Particle dispersion by coherent structures in free shear flows. Particulate Science and Technology 1985; 3(3-4):149–158.
    [24] Prasad AK. Particle image velocimetry. CURRENT SCIENCE-BANGALORE- 2000; 79(1):51–60.
    [25] Park C, Lee S. Effects of free-end corner shape on flow structure around a finite cylinder. Journal of Fluids and Structures 2004; 19(2):141–158.

    QR CODE