簡易檢索 / 詳目顯示

研究生: 洪逸杰
Yi-Jie Hong
論文名稱: 應用多光譜三維微粒循跡測速儀於具穩態射流之微流體裝置之三維流場量測
Measurement of the Three-Dimensional Flow Field of a Steady-Streaming Microfluidic Device Using Multi-Spectra Three-Dimensional Micro-Particle Tracking Velocimetry
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 陳品銓
Pin-Chuan chen
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 155
中文關鍵詞: 微粒循跡測速儀微粒影像測速儀穩態射流
外文關鍵詞: Particle Tracking Velocimetry, Micro Particle Image Velocimetry, Steady-Streaming
相關次數: 點閱:333下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究研發一創新之三維微流場量測技術-多光譜三維微粒循跡測速儀(Multi-Spectra 3-D ?-PTV),利用三針孔多光譜濾鏡陣列與對焦的概念,達到三維三向量(3D-3C)之量測,並採用了三台單色攝影機擷取通過個別濾鏡之影像以增加影像訊雜比。利用校正實驗找出顯微鏡物鏡在微流道之對焦平面(Focus plane),並將攝影機攝得之微粒影像進行影像後處理與疊加,可得三聯影像光點。分析其所構成的三角形大小可計算此微粒位於空間中的深度座標。本研究亦以微铣削技術(Micro-Milling)製造PDMS 微流道之母模,可節省製造成本。實驗結果成功製作凸塊及氣泡式微結構產生穩態射流(Steady-Streaming)之微流體裝置,結構特徵尺寸為0.2mm 與0.5mm。實驗結果比較不同尺寸與微結構產生穩態渦旋效應之差異,並藉由觀測所計算之微流場之不同視角的剖面圖中可以發現穩態渦旋的流動特性與影響範圍。兩種結構所產生的穩態渦旋以氣泡結構較有能力將振動能量傳給流體形成穩態渦旋,故能夠形成較強的渦旋效應並帶動周圍流體流動,並使得流場中無明顯微小渦流現象的產生。文中藉由分析穩態渦旋速度發現,不管何種結構所產生的渦旋其中心都具備著最快的速度值並由中心往外逐漸遞減,並以中心為圓心畫出穩態渦旋半徑即可界定出其影響的範圍。


    A novel volumetric technique, the Multi-Spectra Three-Dimensional Micro-Particle Tracking Velocimetry (Multi-Spectra 3-D ?-PTV), is developed for measuring microscale three-dimensional, three-component (3D-3C) flows. Utilizing the concept of 3-pinhole multi-spectra filter array, the system can achieve higher SNR with three monochrome cameras. With proper calibration, the focal plane of the objective lens of the microscope can be found, and the particle images captured by the three monochrome cameras can be processed and superimposed to create the triplet images. The size of the triangular pattern can be analyzed to obtain the depth location of the particle in physical space. The casts of the microfluidic device are made by micro-milling process to reduce the manufacturing cost. Steady-streaming microfluidics devices with bubble or semi-cylindrical micro-structures of 0.2mm to 0.5mm diameter are successfully made, and 3D-3C flows are imaged and measured for comparison. The experimental results from different sizes and micro structures to generate the steady-streaming vortices are compared by observing the cross-sectional views from different perspectives of the measured 3-D flow fields, and the flow characteristics and regions influenced by the steady streaming vortices can be obtained. Comparison of the steady-streaming vortices generated by these two kinds of structures show that the bubble structure have better ability in converting oscillatory kinetic energy into the fluid to form steady-streaming vortices. It can form stronger steady-streaming vortices and drive the fluids around the vortices. It also prevents the generation of tiny vortices in the flow field. By analyzing the velocity magnitude of the steady-streaming vortices, it can be found that the vortices generated have the highest velocity in the core region of the vortices, and the strength of the vorticities decreases from the center to the outer region. By drawing the radius of the steady-streaming vortex, the region influenced by the steady-streaming vortex can also be obtained.

    目錄 摘要 I Abstract II 致謝 IV 目錄 V 符號索引 VIII 圖表目錄 X 第 1 章 緒論 1 1.1 介紹 1 1.2 文獻回顧 2 1.2.1 穩態射流渦旋(Steady streaming vortex) 2 1.2.1.1 不同結構中穩態射流渦旋觀測 3 1.2.1.2 微小生物或微粒捕捉 4 1.2.1.3 溶液混合及微泵浦 5 1.2.1.4 小結 6 1.2.2 光學流場量測技術 6 1.2.2.1 微粒影像測速儀 (Particle image velocimetry) 6 1.2.2.2 微粒循跡測速儀 (Particle tracking velocimetry) 7 1.2.2.3 Defocusing digital particle image velocimetry 7 1.2.2.4 小結 10 1.3 研究目的 11 1.4 論文架構 11 第 2 章 實驗原理 13 2.1 光學投影原理 13 2.2 校正實驗 14 2.2.1 操作流程 14 2.2.2 格點影像分析 15 2.2.3 極線搜尋方法 15 2.2.4 校正關係方程式 16 第 3 章 實驗方法 18 3.1 多光譜三維微粒循跡測速系統 18 3.1.1 倒立顯微鏡硬體設備 18 3.1.2 雷射光源 18 3.1.3 高速攝影機擷取系統 19 3.1.4 分光模組 19 3.1.5 影像操作系統 19 3.1.6 Matlab 人機介面介紹 20 3.1.7 校正實驗設備設置 20 3.2 穩態射流微流體裝置製作流程 21 3.2.1 壓克力模具切削 21 3.2.2 PDMS 翻模 22 3.2.3 氧電漿黏合 23 3.2.4 穩態射流渦旋驅動裝置 24 3.2.5 微流道內微粒濃度 24 3.3 實驗步驟流程 25 第 4 章 結果與討論 28 4.1 流動驗證結果 28 4.2 不同結構之下整體流場流動結果 29 4.2.1 小結 31 4.3 綜合流場比較結果 31 4.4 流動現象討論 33 4.4.1 速度大小 34 4.4.2 渦旋大小 36 第 5 章 結論與建議 39 5.1 結論 39 5.2 建議與未來工作 40 參考文獻 42

    [1] Nguyen N T & Wereley S T (2002) Fundamentals and applications of microfluidics. Artech House, Norwood.
    [2] Xia Y, Whitesides G M (1998) Soft lithography. Annu Rev Mater Sci 28:153 184.
    [3] Cheng Y F (2015) A capillary driven microfluidic chip for uniform blood
    distribution. Master thesis, NTUST, Taipei Taiwan.
    [4] Whitesides G M (2006) The origins and future of microfluides. Nature
    442:368-373.
    [5] Ozcelik A, Ahmed D, Xie Y et al (2014) An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls. Anal Chem 86: 5083-5088.
    [6] Patel M V, Nanayakkara I A, Simon M G et al (2014) Cavity-induced
    microstreaming for simultaneous on-chip pumping and size-based separation of
    cells and particles. Lab Chip 14:3860-3872.
    [7] Lieu V H, House T A, Schwartz D T (2012) Hydrodynamic tweezers: Impact of
    design geometry on flow and microparticle trapping. Anal Chem 84:1963-1968.
    [8] Lutz B R, Chen J, Schwartz D T (2005) Microscopic steady streaming eddies
    created around short cylinders in a channel: Flow visualization and Stokes layer
    scaling. Phys Fluids. doi:10.1063/1.1824137.
    [9] Lutz B R, Chen J, Schwartz D T (2006) Hydrodynamic tweezers: 1. Noncontact
    trapping of single cells using steady streaming microeddies. Anal Chem
    78:5429-5435.
    [10] Lin C M, Lai Y S, Liu H P et al (2008) Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. Anal Chem 80:8937-8945.
    [11] Huang P H, Nama N, Mao Z et al (2014) A reliable and programmable
    acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip
    14:4319-4323.
    [12] Mao X, Juluri B K, Lapsley M I et al (2010) Milliseconds microfluidic chaotic bubble mixer. Microfluid Nanofluid 8:139-144.
    [13] Prasad A K (2000) Particle image velocimetry. Curr Sci India 79:51-60.
    [14] Santiago J G, Wereley S T, Meinhart C D et al (1998) A particle image
    velocimetry system for microfluidics. Exp Fluids 25:316-319.
    [15] Pereira F, Stüer H, Graff E C et al (2006) Two-frame 3D particle tracking. Meas Sci Technol 17:1680-1692.
    [16] Graff E C, Gharib M (2008) Performance prediction of point-based three-dimensional volumetric measurement systems. Meas Sci Technol. doi:10.1088/0957-0233/19/7/075403.
    [17] Willert C E, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids 12:353-358.
    [18] Pereira F, Gharib M, Dabiri D et al (2000) Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique.
    Application to bubbly flows. Exp Fluids 29:078-084.
    [19] Yoon S Y, Kim K C (2006) 3D particle position and 3D velocity field
    measurement in a microvolume via the defocusing concept. Meas Sci Technol
    17:2897-2905.
    [20] Lu J, Pereira F, Fraser S E et al (2008) Three-dimensional real-time imaging of cardiac cell motions in living embryos. J Biomed Opt. doi:10.1117/1.2830824.
    [21] Pereira F, Lu J, Castano-Graff E et al (2007) Microscale 3D flow mapping with μDDPIV. Exp Fluids 42:589-599.
    [22] Kim K C (2012) Advances and applications on micro-defocusing digital particle image velocimetry (μ-DDPIV) techniques for microfluidics. J Mech Sci
    Technol 26:3769-3784.
    [23] Tien W H, Kartes P, Yamasaki T et al (2008) A color-coded back lighted
    defocusing digital particle image velocimetry system. Exp Fluids 44:1015-1026.
    [24] Tien W H, Dabiri D, Hove J R (2014) Color-coded three-dimensional micro
    particle tracking velocimetry and application to micro backward -facing step
    flows. Exp Fliuds 55:1-14.
    [25] Tien W H (2013) 3-D Particle Tracking Velocimetry: Development and
    Applications in Small Scale Flows. (Doctoral dissertation, University of
    Washington).

    QR CODE