簡易檢索 / 詳目顯示

研究生: 劉渝星
Yu-Sing Liou
論文名稱: 受三角形微結構誘發之聲射流之流動型態
Acoustic Streaming Flow Patterns Induced by Triangular Microstructure
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 陳品銓
Pin-Chuan Chen
劉孟昆
Meng-Kun Liu
溫琮毅
Tsrong-Yi Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 171
中文關鍵詞: 聲射流流場可視化微粒循跡測速儀
外文關鍵詞: Acoustic streaming, Flow Visualization, Particle Tracking Velocimetry
相關次數: 點閱:305下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討微流道中受到三角形微結構誘發產生聲射流 (acoustic streaming)渦旋,利用流場可視化(Flow Visualization)與微粒循跡測速儀(Particle Tracking Velocimetry)技術,以攝影機觀察微粒於微流體裝置內三角形微結構尖端周圍受到聲射流渦旋影響之二維運動軌跡,並計算其速度場。微流體裝置以微銑削技術(Micro-Milling)的方式製作含有三角形微結構之壓克力母模,並成功以PDMS翻模製作出在其三角形尖端周圍產生聲射流渦旋之微流體裝置。三角形結構尖端角度採用127°、90°、53°、41°、28°、18°,其特徵長度為固定高度0.3mm,寬度1.2mm、0.6mm、0.1mm以及固定寬度0.3mm,高度0.3mm、0.4mm、0.6mm之六種三角形微結構。實驗觀察聲射流渦旋時主要透過控制壓電陶瓷片電壓範圍5V~35V以及頻率0.5~3kHz,並比較不同振動條件下產生之渦旋變化。微粒軌跡可用於追蹤渦旋之大小與對流場之影響範圍,並藉由PTV所計算之渦旋速度向量場可以發現聲射流渦旋的流動特性與影響範圍。實驗結果顯示聲射流渦旋會發生在三角形結構之尖端兩側形成一對渦旋,當三角形微結構尖端角度較小,較有能力將振動能量傳遞至流體形成渦旋,因此產生聲射流渦旋效應會越強。固定頻率及電壓下,角度越小所產生之渦旋範圍也較為廣泛。不同頻率下聲射流渦旋大小有明顯不同,並不依頻率提高而變強,其關係非常複雜。不同電壓下則會因電壓提高能形成較強的
    渦旋效應。透過分析渦旋速度發現,不管何種結構所產生的渦旋其中心都具備著最快的速度值並由三角形結構之尖端往外逐漸遞減。透過檢視速度場之Y方向速度分布,則可以判別聲射流之影響範圍。


    In this study, the acoustic streaming flow patterns induced by triangular
    microstructures inside a microchannel is investigated by flow visualization (FV) and particle tracking velocimetry (PTV) technique. 2D tracer particle trajectories of acoustic streaming flows induced by the triangular microstructures are observed and the velocity fields are calculated using CCD camera. The microfluidic device is produced by a PDMS molding process that uses micro-milling to create the master mold that has the triangular geometry. The triangular microstructures have a tip angle of 127°、90°、53°、41°、28° and 18°, based on the geometry of a fixed 0.3mm height with 1.2mm、0.6 mm、0.1 mm base width and 0.3 mm base width with 0.3mm、0.4 mm and 0.6 mm height, respectively. By using the piezoelectric plates, the steady acoustic streaming flow patterns are successfully created and observed at a range of driving voltages from 5 to 35 V and frequencies from 0.5 to 3 kHz. The flow field and influenced area of can be found by the vector field calculated using PTV. The results show that a pair of the acoustic streaming vortices is located near the vertex of the triangle, and the smaller angle structure have better ability in converting converting oscillatory kinetic energy into the fluid to form steady acoustic streaming vortices. At fixed frequency and voltage, the smaller angle of vortex generates the larger area influenced by acoustic streaming. The relationship between the oscillation frequency and the size of the streaming vortices is complicated, and the streaming flow is stronger with larger driving voltage. By analyzing the velocity magnitude of the acoustic streaming vortices, it can be found that the vortices generated have the highest velocity in the core region of the vortices, and the strength of the vorticities gradually decreases from the tip of triangle towards the outer region. By checking the profile of the vertical component of velocity fields, the region influced by the acoustic streaming can be identified.

    摘要.................................................................. I Abstract.............................................................. II 致謝.................................................................. IV 目錄.................................................................. V 符號索引.............................................................. VIII 圖表目錄.............................................................. IX 第 1 章 緒論............................................................ 1 1.1 介紹................................................................ 1 1.2 文獻回顧............................................................ 2 1.2.1 聲射流渦旋(acoustic streaming vortex) ............................ 2 1.2.1.1 不同微結構中的聲射流渦旋......................................... 2 1.2.1.2 微小生物或微粒捕捉............................................... 4 1.2.1.3 聲射流於微混合之應用............................................. 5 1.2.1.4 聲射流渦旋於微泵浦之應用......................................... 6 1.2.1.6 微粒影像測速儀 (Particle image velocimetry,PIV) ................ 6 1.2.1.7 微粒循跡測速儀 (Particle tracking velocimetry) ................. 7 1.2.1.8 小結........................................................... 8 1.3 研究目的........................................................... 8 1.4 論文架構........................................................... 9 第 2 章 實驗原理與方法.................................................. 10 2.1 實驗原理........................................................... 10 2.1.1 聲射流渦旋原理.................................................... 10 VI 2.1.2 壓電陶瓷片原理.................................................... 13 2.1.3 PTV 使用原理 ..................................................... 14 2.2 實驗方法............................................................ 15 2.2.1 聲射流微流體裝置製作流程............................................ 15 2.2.1 實驗量測系統設置................................................... 20 2.3 實驗步驟流程......................................................... 24 2.4 實驗設置參數......................................................... 26 第 3 章 結果與討論....................................................... 27 3.1 不同尖端角度之聲射流渦旋影響.......................................... 27 3.2 不同頻率產生之聲射流流動現象之結果與討論............................... 28 3.2.1 渦旋現象觀察...................................................... 28 3.2.2 渦旋速度分佈...................................................... 31 3.2.3 渦旋範圍討論...................................................... 33 3.3 不同電壓產生之聲射流流動現象討論...................................... 35 3.3.1 渦旋現象觀察...................................................... 35 3.3.2 速度速度分布...................................................... 35 3.4 流場三維性觀察...................................................... 36 第 4 章 結論與建議...................................................... 37 4.1 結論............................................................... 38 4.2 建議與未來工作...................................................... 39 附錄................................................................... 40 附錄1 光學投影原理...................................................... 40 附錄2 校正實驗.......................................................... 40 附錄2.1 操作流程........................................................ 41 附錄2.2 格點影像分析.................................................... 43 VII 附錄2.3 極線搜尋方法.................................................... 44 附錄2.4 校正關係方程式.................................................. 45 參考文獻............................................................... 47

    [1] N. Riley, "<Steady_streaming.pdf>," 2001.
    [2] D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, "A millisecond
    micromixer via single-bubble-based acoustic streaming," Lab Chip, vol. 9, pp.
    2738-41, Sep 21 2009.
    [3] J. Collis, R. Manasseh, P. Liovic, P. Tho, A. Ooi, K. Petkovic-Duran, et al.,
    "Cavitation microstreaming and stress fields created by microbubbles,"
    Ultrasonics, vol. 50, pp. 273-9, Feb 2010.
    [4] J. C. Barry R. Lutz, and Daniel T. Schwartz, "Microscopic steady streaming
    eddies created around short cylinders in a channel," 2005.
    [5] J. C. Barry R. Lutz, and Daniel T. Schwartz*, "Hydrodynamic Tweezers 1
    Noncontact Trapping," 2006.
    [6] P. H. Huang, N. Nama, Z. Mao, P. Li, J. Rufo, Y. Chen, et al., "A reliable and
    programmable acoustofluidic pump powered by oscillating sharp-edge
    structures," Lab Chip, vol. 14, pp. 4319-23, Nov 21 2014.
    [7] M. V. Patel, I. A. Nanayakkara, M. G. Simon, and A. P. Lee, "Cavity-induced
    microstreaming for simultaneous on-chip pumping and size-based separation
    of cells and particles," Lab Chip, vol. 14, pp. 3860-72, Oct 7 2014.
    [8] A. Ozcelik, D. Ahmed, Y. Xie, N. Nama, Z. Qu, A. A. Nawaz, et al., "An
    acoustofluidic micromixer via bubble inception and cavitation from
    microchannel sidewalls," Anal Chem, vol. 86, pp. 5083-8, May 20 2014.
    [9] V. H. Lieu, T. A. House, and D. T. Schwartz, "Hydrodynamic tweezers: impact of
    design geometry on flow and microparticle trapping," Anal Chem, vol. 84, pp.
    1963-8, Feb 21 2012.
    [10] N. Nama, P. H. Huang, T. J. Huang, and F. Costanzo, "Investigation of acoustic
    streaming patterns around oscillating sharp edges," Lab Chip, vol. 14, pp.
    2824-36, Aug 7 2014.
    [11] Y.-X. Zheng, "以微粒子影像測速法與溫度螢光感測塗料量測技術探討氣泡
    誘導聲流之流場及熱傳分析PIV " 2015.
    [12] M. Tanyeri, E. M. Johnson-Chavarria, and C. M. Schroeder, "Hydrodynamic
    trap for single particles and cells," Appl Phys Lett, vol. 96, p. 224101, May 31
    2010.
    [13] X. Mao, B. K. Juluri, M. I. Lapsley, Z. S. Stratton, and T. J. Huang, "Milliseconds
    microfluidic chaotic bubble mixer," Microfluidics and Nanofluidics, vol. 8, pp.
    139-144, 2009.
    [14] A.K.Prasad, "Stereosopic particle image velocimetry," 2000.
    48
    [15] S. T. W. J. G. Santiago, C. D. Meinhart, D. J. Beebe, R. J. Adrian, "A particle
    image velocimetry system for microfluidics," 1998.
    [16] B. Sokoray-Varga and J. Józsa, "Particle tracking velocimetry (PTV) and its
    application to analyse free surface flows in laboratory scale models,"
    Periodica Polytechnica Civil Engineering, vol. 52, p. 63, 2008.
    [17] M. Wiklund, R. Green, and M. Ohlin, "Acoustofluidics 14: Applications of
    acoustic streaming in microfluidic devices," Lab Chip, vol. 12, pp. 2438-51, Jul
    21 2012.
    [18] F. Pereira, H. Stüer, E. C. Graff, and M. Gharib, "Two-frame 3D particle
    tracking," Measurement Science and Technology, vol. 17, pp. 1680-1692,
    2006.
    [19] G. M. W. Younan Xia, "<604.pdf>," 1998.
    [20] Y.-J. Hong, "Measurement of the Three-Dimensional Flow Field of a Steady-
    Streaming Microfluidic Device Using Multi-Spectra Three-Dimensional Micro-
    Particle Tracking Velocimetry," 2016.
    [21] Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, et al., "A
    vision-based hybrid particle tracking velocimetry (PTV) technique using a
    modified cascade correlation peak-finding method," Experiments in Fluids,
    vol. 53, pp. 1251-1268, 2012.
    [22] D. D. Wei-Hsin Tien, Chair James C. Hermanson Alberto Aliseda, "3-D Particle
    Tracking Velocimetry: Development and Applications in Small Scale Flows,"
    2013.

    QR CODE