簡易檢索 / 詳目顯示

研究生: 林孟樺
Meng-Hua Lin
論文名稱: 由單一不對稱三角形結構誘發之聲射流流場分析
A Study of Acoustic Streaming Flows Induced by Single Asymmetric Triangular Structure
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 黃智永
Chih-Yung Huang
曾修暘
Hsiu-Yang Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 139
中文關鍵詞: 聲射流流場可視化微粒影像測速儀微粒循跡測速儀
外文關鍵詞: Acoustic Streaming, Flow Visualization, Particle Image Velocimetry, Particle Tracking Velocimetry
相關次數: 點閱:344下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聲射流(Acoustic Streaming)是一種經由高頻率振盪下在流體與邊界交互作用產生的穩態流動現象。本文使用微型微粒循跡測速儀(Micro Particle Tracking Velocimetry, Micro-PTV)探討微流道中藉由不對稱三角形微結構在高頻下誘發之聲射流形態。本研究使用微铣削(Micro-milling)的方式製作實驗用之壓克力模具,並使用PDMS藥劑進行二次翻模,得到最終實驗使用之微流體裝置。實驗中採用三種不同頂角(α=20°, 35°, 70°)及三種不同傾角(β=30°, 45°, 60°)的不對稱三角形結構誘發聲射流渦旋,探討不對稱三角形頂角、傾角誘發之聲射流變化情形。並利用不同驅動電壓於單一個不對稱三角形結構誘發聲射流,以觀察驅動電壓對聲射流渦旋之影響。由μ-PTV之分析結果可得知一對相互反轉之聲射流渦旋會產生於頂角兩端,且聲射流於不對稱三角形結構尖端附近速度較快。不對稱三角形結構之頂角與聲射流最大絕對速度呈現逆相關之關係,即不對稱三角形頂角越大,產生的聲射流最大絕對速度越小。而不對稱三角形結構之傾角與聲射流渦旋之對稱性則成正相關之趨勢,即當傾角較大,聲射流渦旋則越趨近於對稱的形式。由頂角35°,傾角30°之不對稱三角形結構下改變電壓之實驗結果得知電壓與聲射流最大絕對速度成正相關關係,且電壓越大,產生的聲射流渦旋範圍越大。由不同高度的流場形態比較結果亦可推測聲射流之流場結構有三維之變化。


    Acoustic streaming is a steady flow phenomenon generated from the interaction between the fluid and oscillating boundary. In this study, acoustic streaming flow patterns induced by high frequency oscillation of asymmetric triangular structures are investigated by micro-particle tracking velocimetry (μ-PTV) technique. The PMMA mold of the device in this study is made by micro-milling, and the microfluidic device is made of poly(dimethylsiloxane) (PDMS) through soft lithography. In order to compare the acoustic streaming flow patterns induced by the different asymmetric triangular structures, 3 different tip angles (α=20°, 35°, 70°) and 3 different inclined angles(β=30°, 45°, 60°) are investigated with a fixed frequency of 12 kHz and two voltages 20 V, 25 V. The results of μ-PTV analysis show that a pair of counter-rotating acoustic streaming vortices is generated near the tip of the triangular structure, and the acoustic streaming velocity is higher close to the tip. The tip angle of the asymmetric triangular structure and the maximum absolute flow velocity have an inverse correlation, whereas the larger inclined angle makes the acoustic streaming vortex pair more symmetric. The results of the different input voltage from the asymmetric triangular structure of α=35° and β=30° show that the when the input voltage is larger, the maximum absolute velocity is higher and the induced acoustic streaming vortex is also larger. A comparison of the acoustic streaming flow patterns at different channel heights also suggests that the acoustic streaming flow structure is three-dimensional.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 介紹 1 1.2 文獻回顧 2 1.2.1 聲射流 2 1.2.1.1 微流道中不同幾何結構對聲射流渦旋影響 2 1.2.1.2 微流道中三角形結構誘發聲射流 3 1.2.1.3 陣列結構誘發聲射流形成微泵浦 4 1.2.1.4 聲射流之應用 5 1.2.1.5 Micro-PIV/PTV 6 1.2.1.6 穩態射流的三維量測 8 1.2.2 小結 8 1.3 研究目的 11 1.4 論文架構 11 第二章 實驗原理與方法 12 2.1 實驗原理 12 2.1.1 聲射流原理 12 2.1.2 壓電片(Piezoelectric Disk)原理 14 2.1.3 微粒循跡測速儀(PTV)原理 14 2.2 實驗方法 15 2.2.1 誘發聲射流渦旋微流道製程 15 2.2.1.1 微流體裝置模具製作流程 16 2.2.1.2 PDMS微流道二次翻模過程 17 2.2.1.3 氧電漿黏合製程 19 2.2.1.4 驅動聲射流渦旋之裝置 20 2.2.1.5 微流體裝置中工作流體 22 2.2.2 光學實驗量測系統設置 23 2.2.2.1 倒立顯微鏡 23 2.2.2.2 照射光源 23 2.2.2.3 CCD相機 25 2.2.2.4 驅動壓電陶瓷片之訊號產生器及放大器 26 2.2.2.5 PTV分析影像前處理 27 2.2.2.6 PTV速度場分析 28 2.3 實驗步驟流程 30 2.4 實驗設置參數 32 第三章 結果與討論 35 3.1 不同頂角之不對稱三角形誘發聲射流之觀測結果 35 3.1.1 Case 1 (α=20°, β=30°)誘發聲射流觀測結果 35 3.1.2 Case 2 (α=35°, β=30°)誘發聲射流觀測結果 44 3.1.3 Case 3 (α=70°, β=30°)誘發聲射流觀測結果 53 3.1.4 小結 62 3.2 不同傾角之不對稱三角形誘發聲射流之觀測結果 68 3.2.1 Case 4 (α=35°, β=30°)誘發聲射流觀測結果 69 3.2.2 Case 5 (α=35°, β=45°)誘發聲射流觀測結果 77 3.2.3 Case 6(α=35°, β=60°)誘發聲射流觀測結果 86 3.2.4 小結 95 3.3 不同電壓誘發聲射流之觀測結果 102 3.4 流場中的三維現象 112 第四章 結論與建議 119 4.1 結論 119 4.2 建議與未來工作 120 參考文獻 121

    [1] 盧信甫, 以微粒循跡測速儀研究固體、液滴與氣泡誘發之聲射流 A Study of Acoustic Streaming Flows Induced by Solid, Droplet and Bubble Obstructions using Particle Tracking Velocimetry. 國立台灣科技大學機械工程系碩士論文, 2018.
    [2] V. H. Lieu, T. A. House, and D. T. Schwartz, "Hydrodynamic tweezers: impact of design geometry on flow and microparticle trapping," Anal Chem, vol. 84, no. 4, pp. 1963-1968, Feb 21 2012.
    [3] 劉渝星, 受三角形微結構誘發之聲射流之流動型態 Acoustic Streaming Flow Patterns Induced by Triangular Microstructure. 國立台灣科技大學機械工程系碩士論文, 2018.
    [4] N. Nama, P. H. Huang, T. J. Huang, and F. Costanzo, "Investigation of acoustic streaming patterns around oscillating sharp edges," Lab Chip, vol. 14, no. 15, pp. 2824-2836, Aug 7 2014.
    [5] P. H. Huang et al., "A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures," Lab Chip, vol. 14, no. 22, pp. 4319-4323, Nov 21 2014.
    [6] P. H. Huang et al., "An acoustofluidic micromixer based on oscillating sidewall sharp-edges," Lab Chip, vol. 13, no. 19, pp. 3847-3852, Oct 7 2013.
    [7] B. R. Lutz, J. Chen, and D. T. Schwartz, "Hydrodynamic Tweezers:  1. Noncontact Trapping of Single Cells Using Steady Streaming Microeddies," Analytical Chemistry, vol. 78, no. 15, pp. 5429-5435, Aug 1 2006.
    [8] I. Leibacher, P. Hahn, and J. Dual, "Acoustophoretic cell and particle trapping on microfluidic sharp edges," Microfluidics and Nanofluidics, vol. 19, no. 4, pp. 923-933, 2015.
    [9] A. Ozcelik et al., "Acoustofluidic Rotational Manipulation of Cells and Organisms Using Oscillating Solid Structures," Small, vol. 12, no. 37, pp. 5120-5125, Oct 2016.
    [10] B. R. Lutz, J. Chen, and D. T. Schwartz, "Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling," Physics of Fluids, vol. 17, no. 2, 2005.
    [11] A. k. Prasad, "Particle image velocimetry," CURRENT SCIENCE, vol. 79, pp. 51-60, July 10 2000.
    [12] J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in Fluids, vol. 25, no. 4, pp. 316-319, Sep 1998.
    [13] M. Nabavi, M. H. K. Siddiqui, and J. Dargahi, "Experimental investigation of the formation of acoustic streaming in a rectangular enclosure using a synchronized PIV technique," Measurement Science and Technology, vol. 19, no. 6, 2008.
    [14] Y. C. Lei et al., "A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method," Experiments in Fluids, vol. 53, no. 5, pp. 1251-1268, 2012.
    [15] 洪逸杰, 應用多光譜三維微粒循跡測速儀於具穩態射流之微流體裝置之三維 流場量測 Measurement of the Three-Dimensional Flow Field of a Steady-Streaming Microfluidic Device Using Multi- Spectra Three-Dimensional Micro-Particle Tracking Velocimetry. 國立台灣科技大學機械工程系碩士論文, 2016.
    [16] M. Wiklund, R. Green, and M. Ohlin, "Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices," Lab Chip, vol. 12, no. 14, pp. 2438-2451, Jul 21 2012.
    [17] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Vol. 6 Fluid Mechanies. Pergamon Press, 1959.
    [18] S. S. Sadhal, "Acoustofluidics 15: streaming with sound waves interacting with solid particles," Lab Chip, vol. 12, no. 15, pp. 2600-2611, Aug 7 2012.
    [19] S. S. Sadhal, "Acoustofluidics 13: Analysis of acoustic streaming by perturbation methods," Lab Chip, vol. 12, no. 13, pp. 2292-2300, Jul 7 2012.
    [20] N. Riley, "STEADY STREAMING," Annual Review of Fluid Mechanics, vol. 33, no. 1, pp. 43-65, Jan 1 2001.
    [21] N. Riley, "ON A SPHERE OSCILLATING IN A VISCOUS FLUID," vol. 19, no. 4, pp. 461-472, 1966.
    [22] B. Sokoray-Varga and J. Józsa, "Particle tracking velocimetry (PTV) and its application to analyse free surface flows in laboratory scale models," Periodica Polytechnica Civil Engineering, vol. 52, no. 2, pp. 63-71, 2008.

    QR CODE