簡易檢索 / 詳目顯示

研究生: 賴建霖
Chien-Lin Lai
論文名稱: 以微粒影像測速儀探討二階靜電集塵器內之充電微粒軌跡
Study of Charged Particle Trajectories in a Two-Stage Electrostatic Precipitator Using Particle Image Velocimetry
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 陳炤彰
Chao-Chang Chen
林怡均
Yi-Jiun Lin
溫琮毅
Tsrong-Yi Wen
周鼎贏
Dean Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 116
中文關鍵詞: 懸浮微粒靜電集塵器微粒影像測速儀
外文關鍵詞: Particulate Matter, Electrostatic Precipitator, Particle Image Velocimetry
相關次數: 點閱:309下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在空氣中的懸浮微粒(Particulate Matter, PM)已被證實對人體健康有負面影響,因此移除懸浮微粒的技術也成為目前人們研究的目標。靜電集塵器(electrostatic precipitator , ESP)是其中一種高效率的微粒收集系統,被廣泛的運用在空氣清淨機或工業用過濾器中。本論文以微粒影像測速儀(Particle Image Velocimetry, PIV)技術,觀察氯化鈉與氧化鋁微粒在設置圓柱形冠狀電極之二階靜電集塵模型中受電場影響後的流動變化,並量測帶電微粒之軌跡以及速度。本研究中探討了不同流速(2.6m/s~5.7m/s)以及冠狀電極電壓(0kV~12kV)共12種設置之靜電集塵模型在充電區與收集區中微粒受電場影響後的移動軌跡,並利用寬範圍顆粒粒徑譜儀進行微粒的集塵效率檢測,驗證微粒移動軌跡與集塵效率之相互關係。研究結果發現微粒在充電區中會隨著冠狀電極電壓的增大,產生的離子風(Ionic wind)增強,進而使微粒流向於激發電極板的速度越快且角度越垂直。在收集區中,微粒一樣會因為冠狀電極電壓的增大,使得微粒流向於收集板趨勢越為明顯。比較氧化鋁微粒與氯化鈉微粒受電場影響移動軌跡可發現氧化鋁微粒流向收集板趨勢較氯化鈉微粒明顯,原因在於氧化鋁微粒的電荷數(Charge number)比氯化鈉微粒高,因此更容易受電場影響。比較各設置之集塵效率可發現流速越大則集塵效率越差,冠狀電極電壓越強時則集塵效率越好。在流速為2.6m/s,冠狀電極電壓為12kV的情況下,氯化鈉有最高集塵效率為82.5%、氧化鋁微粒的集塵效率最高為88.5%。氧化鋁微粒全部數據的集塵效率皆比氯化鈉微粒高,藉此證實微粒因電荷數的影響在模型中的移動軌跡與集塵效率有著密切的關係。


    Particulate Matter (PM) has been confirmed to cause health risks and PM removal technology is therefore the research interest of many studies. Electrostatic Precipitator(ESP) is one of the highly efficient particle collecting system and is widely used for air purifier and industrial filtering system. In this study, the flow behaviors of charged NaCl and Al_2 O_3 particles in the two-stage ESP model excited by the cylindrical corona electrode is investigated. The trajectories and velocities of the charged particles were measured by Particle Image Velocimetry (PIV) for 12 configurations of ESP with bulk flow velocities ranging from 2.6m/s to 5.7m/s and corona electrodes voltages ranging from 0kV to 12kV in both charger and collector regions. The particle collecting efficiencies were obtained by a wide-range particle spectrometer to evaluate the relations between the particle trajectory and the collecting efficiency. The results show that when the corona electrodes voltage is larger, it would produce stronger ionic wind and cause the charged particles move towards the exciting electrode. Similar trends were found in the collector area as the higher the corona electrodes voltage, the faster particle movements towards the collecting electrode. Comparison between the NaCl and Al_2 O_3 particle trajectories show that because of the higher charger number of Al_2 O_3 particles than that of the NaCl particles, the faster the Al_2 O_3 particles move towards the collecting electrode. Collecting efficiency results show higher flow velocity make the particle collecting efficiency lower whereas higher corona electrodes voltage makes the collecting efficiency higher. For both NaCl and Al_2 O_3 particles, the highest collecting efficiencies of 82.5% and 88.5% were obtained at the flow velocity of 2.6m/s and corona electrodes voltage of 12kV, respectively. Al_2 O_3 particles have higher collecting efficiencies than NaCl in all configurations confirms that the charge number is of critical importance to the trajectories and collecting efficiencies of charged particles in the ESP.

    摘要 2 Abstract 4 致謝 6 目錄 7 圖目錄 10 表目錄 14 第一章 緒論 15 1.1 研究背景 15 1.2 文獻回顧 17 1.2.1 懸浮微粒對人體的危害 17 1.2.2 不同幾何型式之冠狀電極 19 1.2.3 觀察ESP電極附近之流場變化 21 1.3 研究目的 30 1.4 論文架構 31 第二章 實驗原理與方法 32 2.1 靜電集塵原理 32 2.1.1 電暈放電 32 2.1.2 微粒充電機制 33 2.1.3 微粒受力機制 34 2.2 實驗方法 35 2.2.1 二階靜電集塵器模型 35 2.2.1.1 二階靜電集塵壓克力模型 37 2.2.1.2 整流器 38 2.2.1.3 風扇 39 2.2.1.4 高壓直流電源供應器 41 2.2.2 流場可視化實驗設置 42 2.2.2.1 雷射硬體設備和透鏡組合 42 2.2.2.2 微粒生成方法 44 2.2.2.3 高速攝影機捕捉系統 50 2.2.3 影像微粒測速儀分析 51 第三章 結果與討論 55 3.1 靜電集塵模型充電區之氯化鈉微粒測速分析結果 55 3.1.1 電壓-冠狀電極0kV / 收集板0kV 56 3.1.2 電壓-冠狀電極8kV / 收集板16kV 60 3.1.3 電壓-冠狀電極10kV / 收集板16kV 65 3.1.4 電壓-冠狀電極12kV / 收集板16kV 69 3.1.5 小結 73 3.2 靜電集塵模型收集區之氯化鈉微粒測速分析結果 74 3.2.1 電壓-冠狀電極0kV / 收集板0kV 75 3.2.2 電壓-冠狀電極8kV / 收集板16kV 79 3.2.3 電壓-冠狀電極10kV / 收集板16kV 83 3.2.4 電壓-冠狀電極12kV / 收集板16kV 87 3.2.5 小結 91 3.3 氯化鈉與氧化鋁微粒測速分析結果比較 92 3.3.1 充電區 92 3.3.2 收集區 98 3.4 氯化鈉與氧化鋁微粒集塵效率比較 108 第四章 結論與未來建議 110 4.1 結論 110 4.2 建議及未來工作 112 參考文獻 113

    [1] C. A. Pope and D. W. Dockery, "Health Effects of Fine Particulate Air Pollution: Lines that Connect," Journal of the Air & Waste Management Association, vol. 56, no. 6, pp. 709-742, 2012.
    [2] G. Oberdorster, E. Oberdorster, and J. Oberdorster, "Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles," Environ Health Perspect, vol. 113, no. 7, pp. 823-39, Jul 2005.
    [3] 尹啓銘, "空氣污染物控制設備之評估與選用," 經濟部工業局, vol. 6, pp. 59-78, 1995.
    [4] T.-C. Le, G.-Y. Lin, and C.-J. Tsai, "The Predictive Method for the Submicron and Nano-Sized Particle Collection Efficiency of Multipoint-to-Plane Electrostatic Precipitators," Aerosol and Air Quality Research, vol. 13, no. 5, pp. 1404-1410, 2013.
    [5] A. Miller, G. Frey, G. King, and C. Sunderman, "A Handheld Electrostatic Precipitator for Sampling Airborne Particles and Nanoparticles," Aerosol Science and Technology, vol. 44, no. 6, pp. 417-427, 2010.
    [6] J. Miller, B. Hoferer, and A. Schwab, "The Impact of Corona Electrode Configuration on Electrostatic Precipitator Performance," Journal of Electrostatics, vol. 44, pp. 67-75, 1998.
    [7] M. Jedrusik, A. Swierczok, and R. Teisseyre, "Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design," Powder Technology, vol. 135-136, pp. 295-301, 2003.
    [8] M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, "Particle Image Velocimetry-A Practical Guide," Springer-Verlag Berlin, pp. 1-445, 1998.
    [9] J. Mizeraczyk, "Measurements of the velocity field of the flue gas flow in an electrostatic precipitator model using PIV method," Journal of Electrostatics, vol. 51, pp. 272-277, 2001.
    [10] J. Mizeraczyk , J. Dekowski, J. Podlinski, and M. Kocik, "Laser Flow Visualization and Velocity Fields by Particle Image Velocimetry in an Electrostatic Precipitator Model," The Visualization Society of Japan and Ohmsha, vol. 6, no. 2, pp. 125-133, 2003.
    [11] J. Podliński., M. Kocik., R. Barbucha., A. Niewulis., J. Mizeraczyk., and A. Mizuno., "3D PIV measurements of the EHD flow patterns in a narrow electrostatic precipitator with wire-plate or wire-flocking electrodes," Czechoslovak Journal of Physics, vol. 56, pp. B1009–B1016, 2006.
    [12] J. Podliński, J. Dekowski, J. Mizeraczyk, D. Brocilo, K. Urashima, and J. S. Chang, "EHD flow in a wide electrode spacing spike–plate electrostatic precipitator under positive polarity," Journal of Electrostatics, vol. 64, no. 7-9, pp. 498-505, 2006.
    [13] 蘇建霖, "尖端冠狀電極應用於靜電集塵器之特姓 Characterizations of Angular Corona Electrodes in Electrostatic Precipitators," 台灣科技大學機械工程學系學位論文, pp. 1-96, 2018.
    [14] J. Chang, P. Lawless, and T. Yamamoto, "Corona Discharge Processes," IEEE Transactions on plasma science, vol. 19, pp. 1152-1166, 1991.
    [15] M. Goldman, A. Goldman, and R. Sigmond, "The corona discharge, its properties and specific uses," Pure and Applied Chemistry, vol. 57, pp. 1353-1362, 1985.
    [16] W. C. Hinds, "Aerosol Technology : Properties, Behavior, and Measurement of Airborne Particles," John Wiley and Sons, 2012.
    [17] 陳建志, "塗覆量子點之溫度感測流場循跡微粒之研發 Development of Temperature Sensitive Flow Tracer Particles Coated with Quantum Dots," 台灣科技大學機械工程學系學位論文, pp. 1-118, 2018.
    [18] W. Thielicke and E. J. Stamhuis, "PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB," Journal of Open Research Software, vol. 2, 2014.
    [19] T.-Y. Wen, H.-C. Wang, I. Krichtafovitch, and A. V. Mamishev, "Novel electrodes of an electrostatic precipitator for air filtration," Journal of Electrostatics, vol. 73, pp. 117-124, 2015.
    [20] D. J. Griffiths and C. Inglefield, "Introduction to Electrodynamics," American Journal of Physics, vol. 73, no. 6, pp. 574-574, 2005.
    [21] 林政毅, "以流場可視化與數值模擬探討熔融沉積成形3D列印機內之微粒汙染問題 Investigation of Particulate Pollutant in a FDM 3D Printer by Flow Visualization and Numerical Simulation," 台灣科技大學機械工程學系學位論文, pp. 1-115, 2018.

    QR CODE