簡易檢索 / 詳目顯示

研究生: 薛慶璋
Qing-Zhang Xue
論文名稱: 穿孔式方波形收集電極在靜電集塵器中抑制微粒再迴流之現象
Suppress Particle Re-Entrainment in Electrostatic Precipitator by Using Perforated Square-Wave Collecting Electrode
指導教授: 溫琮毅
Tsrong-Yi Wen
口試委員: 林顯群
Sheam-Chyun Lin
林文印
Wen-Yinn Lin
陳志傑
Chih-Chieh Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 58
中文關鍵詞: 靜電集塵器穿孔式方波形收集電極再迴流現象收集效率
外文關鍵詞: Electrostatic Precipitator, Perforated Square-wave Collecting Electrode, Re-entrainment Phenomenon, Collection Efficiency
相關次數: 點閱:328下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當空氣中過多的懸浮微粒經由人體呼吸而沉積在身體體內時,會引發各種疾病,如心血管疾病、呼吸道疾病、以及肺部相關疾病等。隨著工業發展,工廠和燃煤發電廠等所排放出的懸浮微粒越來越多,若不加以控管則會對環境及人體健康造成危害。靜電集塵器是一種適用於具有高微粒濃度以及高溫環境下的微粒收集器。二階靜電集塵器是由充電區以及收集區所組成。當提供充電區適當的強電場時,其所產生的電暈放電現象會將通過充電區的微粒進行充電。隨後,帶電的微粒會受到收集區強電場影響產生感應靜電力而往收集電極移動,最後沉積在收集電極(被收集)。為了維持靜電集塵器的收集效率,會藉由敲擊的方式來清潔電極表面。然而,這些被敲落的微粒有機會受到流場的影響而被帶離整個系統,最終導致所排放出的微粒量增加。此種微粒重新回到流場的現象稱之為再迴流(Re-Entrainment)。本論文提出簡易方波形收集電極(Simple Square-Wave Collecting Electrode, SSCE)與穿孔式方波形收集電極(Perforated Square-Wave Collecting Electrode, PSCE)兩種收集電極來抑制微粒再回流的情形,並且和傳統平板收集電極(Flat Plate Collecting Electrode, FPCE)做交叉比較。結果表示,在氣流速度6.0 m/s 且不具敲擊的情況下,PSCE 和SSCE 相較於FPCE 分別減少了18.3% 和9.8% 的收集效率下降。然而在加入敲擊系統後,隨著流場速度增加至6.0 m/s,PSCE 和SSCE 分別下降了8.9% 和11.6% 的收集效率,FPCE 則下降了28.1%,這代表PSCE 及SSCE 能抑制再迴流並且適用於高流場
    速度之環境。從收集電極上進行觀察,由於大微粒所產生的慣性力較大,會衝撞方波結構的迎風面,而小微粒則會隨著流場移動而沉積在方波形結構的背風面。在方波形結構裡亦能觀察到有微粒的沉積現象,當流場流經方波板時,方波形結構裡的速度小於主流場的速度,對剝落的微粒造成較小的拖曳力,最終減少微粒再迴流的機會。此外,使用PSCE 時,部分微粒會穿越PSCE 上的孔洞而進入到介於PSCE 與外殼間的一個空間。此空間裡的流速相當地小,除了有較小的拖曳力之外,還能阻擋微粒再迴流於流場當中。相比SSCE,PSCE 可以在流場速度為6.0 m/s 之情況下多抑制4% 的再迴流率。


    Breathing too many aerosol particles can cause various diseases such as ardiovascular
    diseases, respiratory diseases, and lung-related diseases. With the development of the industry, more and more particulate matters are emitted from factories and coal-fired power plants. If these particulate matters are not in control, they will harm the environment and human's health. Electrostatic precipitator is particle collector, suitable for environments that have high particle concentration or are high temperature. A two-stage electrostatic precipitator consists of a charger and a
    collector. When a high-enough electric field is provided to the charger, the corona discharge induced in the charger will charge particles passing through the charger. The charged particles will finally deposit onto the collecting electrode because of
    the induced electrostatic forces in the collector. In order to maintain the collection efficiency of the electrostatic precipitator, the collecting electrode is usually cleaned by rapping, to dislodge those collected particles to the hopper underneath the collector. However, these dislodged particles have chances to get away from the entire system due to the nonstop airflow, eventually resulting in an decrease of the collection efficiency. This phenomenon is known as re-entrainment. This thesis compares the ability of suppressing particles re-entrainment by three different collecting electrodes, a perforated square-wave collecting electrode (PSCE), a simple square-wave collecting electrode (SSCE), and a flat plate collecting electrode (FPCE). The results show that, at a gas flow rate of 6.0 m/s without rapping, PSCE and SSCE reduce the decreasing of collection efficiency by 18.3% and 9.8%, respectively, when compared to FPCE. However, at a gas flow rate of 6.0 m/s with rapping, the collection efficiency of PSCE and SSCE decreases by 8.9% and 11.6%,respectively, while that of FPCE decreases by 28.1%. This means that PSCE and SSCE can suppress re-entrainment well. By looking into the collecting electrode, large particles impact the upstream side of the square-wave structure, whereas small
    particles tend to follow the flow stream and deposit on the downstream side of the
    square-wave structure. Besides, when the airflow goes through the square-wave plate, the velocity in the square-wave structure is small, and thus the drag force on the collected particles, reducing the chance of particles re-entrainment. Additionally,
    the space between the PSCE and the enclosure is isolated from the main airstream, the airflow velocity in this space is also small. Particles enter this space through the holes of the PSCE would also experience small drag and thus have low chance to reenter the environment. Compared with the SSCE, the PSCE is able to suppress additional 4% of particle re-entrainment rate at 6.0 m/s airflow velocity.

    致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 靜電集塵器的種類. . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 微粒再迴流. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 乾式與溼式靜電集塵器. . . . . . . . . . . . . . . . . . . . . 6 1.2.4 不同形式的收集電極. . . . . . . . . . . . . . . . . . . . . . . 7 1.3 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 第二章實驗原理與方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 靜電集塵原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 電暈放電. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 微粒充電機制. . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.3 微粒受力機制. . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 實驗方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 實驗設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 實驗參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3 實驗儀器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 第三章實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 充電區特徵曲線. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 收集效率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 微粒沉積的重量百分比. . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 微粒再迴流率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 視覺檢測微粒的沉積現象. . . . . . . . . . . . . . . . . . . . . . . . 34 3.6 微粒累積量對於充電區性能的影響. . . . . . . . . . . . . . . . . . . 39 第四章結論與建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 未來工作與建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    [1] 行政院環境保護署-空氣品質監測網, ” 空氣品質指標的定義.”
    [2] C. A. Pope III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito,
    and G. D. Thurston, ”Lung cancer, cardiopulmonary mortality, and long-term
    exposure to fine particulate air pollution,” Jama, vol. 287, no. 9, pp. 1132-
    1141, 2002.
    [3] V. S. Taskar and D. B. Coultas, ”Is idiopathic pulmonary fibrosis an environmental
    disease?,” Proceedings of the American Thoracic Society, vol. 3, no.
    4, pp. 293-298, 2006.
    [4] Y. Song, X. Li, and X. Du, ”Exposure to nanoparticles is related to pleural
    effusion, pulmonary fibrosis and granuloma,” European Respiratory Journal,
    2009.
    [5] J. Schwartz, D. W. Dockery, and L. M. Neas, ”Is daily mortality associated
    specifically with fine particles?,” Journal of the Air & Waste Management Association,
    vol. 46, no. 10, pp. 927-939, 1996.
    [6] A. Seaton, D. Godden, W. MacNee, and K. Donaldson, ”Particulate air pollution
    and acute health effects,” The Lancet, vol. 345, no. 8943, pp. 176-178,
    1995.
    [7] 行政院環境保護署-空氣品質監測網, ” 空氣品質標準,” 2012.
    [8] Z. Pražnikar and J. Pražnikar, ”The effects of particulate matter air pollution
    on respiratory health and on the cardiovascular system,” Slovenian Journal of
    Public Health, vol. 51, no. 3, pp. 190-199, 2012.
    [9] 黃郁揚、黃麗煌, ” 戰勝PM2.5! 越來越多的疾病可能與空污有關,” no. 行政
    院環境保護署, 2018.
    [10] T. Yamamoto and H. Velkoff, ”Electrohydrodynamics in an electrostatic precipitator,”
    Journal of Fluid Mechanics, vol. 108, pp. 1-18, 1981.
    [11] J. S. Chang, P. A. Lawless, and T. Yamamoto, ”Corona discharge processes,”
    IEEE Transactions on Plasma Science, vol. 19, no. 6, pp. 1152-1166, 1991.
    [12] A. Mizuno, ”Electrostatic precipitation,” IEEE Transactions on Dielectrics
    and Electrical Insulation, vol. 7, no. 5, pp. 615-624, 2000.
    [13] H. Wenge and X. Haowang, ”Non-static Collection Process of the electrostatic
    Precipitator,” in Electrostatic Precipitation: Springer, 2009, pp. 79-83.
    [14] K. R. Parker, ”Why an electrostatic precipitator?,” in Applied Electrostatic
    Precipitation: Springer, 1997, pp. 1-10.
    [15] H. J. White, ”Industrial Electrostatic Precipitation,” in Industrial Electrostatic
    Precipitation: Addison-Wesley, 1963.
    [16] J. S. Chang, P. A. Lawless, and T. Yamamoto, ”Corona discharge processes,”
    IEEE Transactions on Plasma Science, vol. 19, no. 6, pp. 1152-1166, 1991.
    [17] A. Zukeran, Y. Ikeda, Y. Ehara, M. Matsuyama, T. Ito, T. Takahashi, H.
    Kawakami, and T. Takamatsu, ”Two-stage-type electrostatic precipitator reentrainment
    phenomena under diesel flue gases,” IEEE Transactions on Industry
    Applications, vol. 35, no. 2, pp. 346-351, 1999.
    [18] M. Moisio, ”Real time size distribution measurement of combustion aerosols,”
    1999.
    [19] Y. J. Suh and S. S. Kim, ”Effect of obstructions on the particle collection efficiency
    in a two-stage electrostatic precipitator,” Journal of Aerosol Science,
    vol. 27, no. 1, pp. 61-74, 1996.
    [20] A. C. Lai, M. A. Byrne, and A. J. Goddard, ”Measured deposition of aerosol
    particles on a two-dimensional ribbed surface in a turbulent duct flow,” Journal
    of Aerosol Science, vol. 30, no. 9, pp. 1201-1214, 1999.
    [21] M. Hirota, H. Fujita, and H. Yokosawa, ”Experimental Study on Convective
    Heat Transfer for Turbulent Flow in a Square Duct with a Ribbed Rough Wall
    (Characteristics of Mean Temperature Field),” Journal of Heat Transfer, vol.
    116, no. 2, pp. 332-340, 1994.
    [22] T. Y. Wen, I. Krichtafovitch, and A. V. Mamishev, ”Reduction of aerosol
    particulates through the use of an electrostatic precipitator with guidanceplate-
    covered collecting electrodes,” Journal of Aerosol Science, vol. 79, pp.
    40-47, 2015.
    [23] T. Y. Wen, I. Krichtafovitch, and A. V. Mamishev, ”Numerical study of electrostatic
    precipitators with novel particle-trapping mechanism,” Journal of
    Aerosol Science, vol. 95, pp. 95-103, 2016.
    [24] T. Yamamoto, T. Abe, T. Mimura, N. Otsuka, Y. Ito, Y. Ehara, and A.
    Zukeran, ”Electrohydrodynamically assisted electrostatic precipitator for the
    collection of low-resistivity dust,” IEEE Transactions on Industry Applications,
    vol. 45, no. 6, pp. 2178-2184, 2009.
    [25] M. Goldman, A. Goldman, and R. Sigmond, ”The corona discharge, its properties
    and specific uses,” Pure and Applied Chemistry, vol. 57, no. 9, pp.
    1353-1362, 1985.
    [26] W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of
    Airborne Particles. John Wiley & Sons, 2012.
    [27] J. Chen and J. H. Davidson, ”Ozone production in the negative DC corona:
    the dependence of discharge polarity,” Plasma Chemistry and Plasma Processing,
    vol. 23, no. 3, pp. 501-518, 2003.
    [28] Y. Zhuang, Y. J. Kim, T. G. Lee, and P. Biswas, ”Experimental and theoretical
    studies of ultra-fine particle behavior in electrostatic precipitators,”
    Journal of Electrostatics, vol. 48, no. 3-4, pp. 245-260, 2000.
    [29] M. Rong, D. Liu, D. Wang, B. Su, X. Wang, and Y. Wu, ”A new structure
    optimization method for the interneedle distance of a multineedle-to-plane
    barrier discharge reactor,” IEEE Transactions on Plasma Science, vol. 38, no.
    4, pp. 966-972, 2010.

    QR CODE