簡易檢索 / 詳目顯示

研究生: 蘇峻豪
Jun-Hao Su
論文名稱: 飛行靜電集塵器之發展與性能評估
Development and Performance Evaluation of a Flying Electrostatic Precipitator
指導教授: 溫琮毅
Tsrong-Yi Wen
口試委員: 林顯群
Sheam-Chyun Lin
陳志傑
Chih-Chieh Chen
林文印
Wen-Yinn Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 64
中文關鍵詞: 靜電集塵器離子風無人機集塵效率
外文關鍵詞: Semi two-stage ESP, Vibration Acceleration, Collection Efficiency, Ionic Wind
相關次數: 點閱:270下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 暴露於微粒濃度高的環境對於人體健康的危害已經被證實。有研究指出,當空氣中懸浮微粒濃度增加時,人體因呼吸系統疾病的就醫率也會增加。因此,當突如其來會產生大量微粒汙染源的事件發生時(如火災),能及時且有效去除懸浮微粒的技術期望被開發。本論文提出飛行靜電集塵器的構想,將靜電集塵器搭載於旋翼型無人飛行器上。利用靜電集塵器低壓力降與高集塵效率的特色,結合旋翼型無人飛行器的高機動性,可不拘於交通與地形的限制,能及時地將靜電集塵器移動至污染源上方直接捕集粒狀汙染物。靜電集塵器是利用電液動力學的原理來收集微粒,其運作原理是利用電暈放電將通過的微粒充電,接著,再利用感應靜電力迫使這些帶電微粒往收集電極移動而被收集。由於靜電集塵器的電極不是極小就是與氣流方向平行,因此與袋式集塵器的濾網相比,靜電集塵器壓力降非常小,而且不容易隨著集塵量增加而改變。飛行靜電集塵器可以利用此低壓力降的特色,藉由燃燒過程中產生的自然對流來帶動微粒引導入靜電集塵器內,而不需額外加裝風扇來引導氣流。然而,在低流速的環境下,傳統二階靜電集塵器之充電區內會有離子風的產生,且離子風方向垂直於入口氣流方向,因此當微粒經過充電區時可能會受於離子風阻擋的影響,而無法順利進入收集區中,降低微粒被捕集的機會。為了改善靜電集塵器入口氣流受到離子風阻擾的影響,本論文以改變傳統二階靜電集塵器中冠狀電極與激發電極的擺置方式,使產生的離子風方向不完全垂直於入口氣流方向。此改良後的傳統二階靜電集塵器稱之為「類」二階靜電集塵器。由實驗結果可知,類二階靜電集塵器可比傳統二階靜電集塵器更容易引導約11.8%的微粒量進入靜電集塵器內。此外,由於飛行靜電集塵器是處於動態的環境下收集粒狀汙染物,因此本論文亦討論靜電集塵器在移動過程中集塵效率的特徵與變化。結果顯示,集塵效率隨著排斥電壓的增加而上升。在動態測試中,類二階靜電集塵器移動的距離並不影響其集塵效率。然而,在不同的移動速度下,集塵效率在5 kV以上的排斥電壓時,將可承受約5g的振動加速度影響。當排斥電壓下降至2 kV以下時,只要振動加速度大於3g,收集板上的微粒就會受到影響而脫落,導致集塵效率低落。隨著振動加速度的增加與排斥電壓的下降,影響集塵效率的程度越大,至多影響約20%的集塵效率。總結來說,當靜電集塵器操作於移動的狀態時,不需考慮移動距離對於集塵效率的影響。若在低排斥電壓下,收集板上的微粒則越容易受到振動的影響而脫落並迴流於空氣中,最終導致集塵效率低落,且集塵效率隨著振動加速度的增強而降低。


    Exposure to an environment that has a high-concentrated aerosol particle has been confirmed to be harmful to human health. According to the literatures, when the concentration of aerosol particle increases, the rate of going to the clinic because of respiratory diseases increases. Hence, when a sudden incident in which a large number of aerosol particles are produced, such as fires, a device that is capable of removing those particles efficiently and effectively is expected to be developed. This thesis proposes a concept, “flying electrostatic precipitator (flying ESP),” that combines an ESP (high collection efficiency) and a drone (high mobility) to collect those particles directly on top of it regardless of traffic and terrain. ESP collects particles based on the principle of electrohydrodynamics. The passing particles are charged by corona discharge. Then these charged particles move to the collecting electrode by the effect of induced electrostatic force when passing through the collector. Because the electrodes of the ESP are either thin or parallel to the direction of the airflow, the pressure drop of the ESP is much smaller than that of the bag filter. Besides, the collection efficiency of an ESP does not increase over the dust accumulation. Taking the advantage of low pressure drop, particles can pass a flying ESP because of the airflow generated by the natural convection that is caused by combustion, without using external fans. However, the charger of the traditional two-stage ESP generates the ionic wind that is perpendicular to the incoming airflow. If the incoming airflow is low enough, the ion wind can significantly impede the incoming airflow, reducing the chance of particles entering the ESP (by pass). Thus, this thesis proposes the semi two-stage ESP to make the ionic wind direction not completely perpendicular to the incoming airflow. The results showed that the semi two-stage ESP can guide about 11.8% particles into the ESP more than the traditional two-stage ESP can. Additionally, because the flying ESP collects particles while moving, this thesis also discusses the characteristics of collection efficiency as the ESP works in moving state. The results showed that the collection efficiency increases exponentially with the increasing of the repelling voltage. The moving distance of the semi two-stage ESP does not affect the collection efficiency. Nevertheless, when the repelling voltage is over 5 kV, the collection efficiency is not affected even the vibrational acceleration is 5g (moving velocity at 0.22 m/s). When the repelling voltage is below 2 kV, the particles on the collecting electrode can fall off as long as the vibration acceleration is higher than 3g. With a high vibration acceleration and a low repelling voltage, the collection efficiency can be significantly influenced, up to 20% loss of the collection efficiency. In summary, when ESP operates in a moving state, it is not necessary to consider the influence of the moving distance for the collection efficiency. However, when ESP operates at a low repelling voltage, the particles on the collecting plate can be coming off due to vibration, lowering the collection efficiency. The collection efficiency decreases with the increasing of the vibration.

    目錄 致謝 i 摘要 ii Abstract iv 目錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 4 1.3 文獻回顧 5 1.3.1 靜電集塵器的形式 5 1.3.2 離子風效應對於集塵過程的影響 7 1.3.3 靜電集塵器受振動產生粉塵揚起的現象 11 1.4 論文架構 12 第二章 實驗原理與方法 13 2.1 靜電集塵器的工作原理 13 2.1.1 電暈放電 14 2.1.2 微粒充電機制 15 2.1.3 微粒收集機制 18 2.2 實驗方法 19 2.2.1 實驗設置-傳統與類二階靜電集塵器之微粒的沉積情形 19 2.2.2 實驗設置-動態類二階靜電集塵器之集塵效率的特徵變化 22 2.3 實驗參數 25 2.3.1 測試微粒 26 2.3.2 實驗參數-傳統與類二階靜電集塵器之操作條件 27 2.3.3 實驗參數-動態類二階靜電集塵器之集塵效率的特徵變化 28 2.4 實驗儀器 30 2.4.1 高壓電源供應器 30 2.4.2 無紙式記錄儀 30 2.4.3 精密天平 31 2.4.4 流量計 31 2.4.5 粒徑分析儀 31 2.4.6 加速度感測器 31 2.4.7 傳動裝置 32 第三章 結果與討論 33 3.1 傳統二階與類二階靜電集塵器之特徵曲線 33 3.1.1 傳統二階與類二階靜電集塵器之微粒沉積情形 34 3.1.2 視覺檢測微粒沉積情形 35 3.2 類二階靜電集塵器之動態與靜態實驗 37 3.2.1 排斥電壓對集塵效率之影響 37 3.2.2 移動距離對於集塵效率之影響 39 3.2.3 移動速度對於集塵效率的影響 42 3.2.4 類二階靜電集塵器在運作期間的電壓與電流變化 45 第四章 結論與建議 46 4.1 結論 46 4.2 建議與未來工作 47 文獻參考 48

    文獻參考
    [1] 李德綸, "鹽水蜂炮等民俗活動對空氣品質之影響," 成功大學環境工程學系學位論文, pp. 1-108, 2006.
    [2] 王馨儀, "鹽水蜂炮產生之微粒空氣污染物和循環及呼吸系統門診之間的關係," 成功大學環境醫學研究所學位論文, pp. 1-71, 2010.
    [3] L. Perez, A. Tobias, X. Querol, N. Künzli, J. Pey, A. Alastuey, M. Viana, N. Valero, M. Sunyer, G. Cabré, and J. Sunyer, "Coarse particles from Saharan dust and daily mortality," Epidemiology, pp. 800-807, 2008.
    [4] B. Ambade, "The air pollution during Diwali festival by the burning of fireworks in Jamshedpur city, India," Urban climate, vol. 26, pp. 149-160, 2018.
    [5] H. Clark, "Air pollution from fireworks," Atmospheric Environ, vol. 31, pp. 2893-2894, 1997.
    [6] M. D. J. Howard, "Guidance for filtration air cleaning system to protect building environments from airborne chemical,biological, and radiological attacks," Department of Health and Human Services, pp. 17-20, 2003.
    [7] V. Novick, P. Monson, and P. Ellison, "The effect of solid particle mass loading on the pressure drop of HEPA filters," Journal of Aerosol Science, vol. 23, no. 6, pp. 657-665, 1992.
    [8] A. Mizuno, "Electrostatic precipitation," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 5, pp. 615-624, 2000.
    [9] X. Xu, C. Zheng, P. Yan, W. Zhu, Y. Wang, X. Gao, Z. Luo, M. Ni, and K. Cen, "Effect of electrode configuration on particle collection in a high-temperature electrostatic precipitator," Separation and Purification Technology, vol. 166, pp. 157-163, 2016.
    [10] Y. Kuroda,Y. Kawada, T. Takahashi, Y. Ehara, T. Lto, A. Zukeran, Y. Kono, and K. Yasumoto, "Effect of electrode shape on discharge current and performance with barrier discharge type electrostatic precipitator," Journal of Electrostatics, vol. 57, no. 3-4, pp. 407-415, 2003.
    [11] 經濟部工業局, 粒狀汙染物控制設備之評估與選用. 1994.
    [12] C. Wang, Z. Xie, B. Xu, J. Li, and X. Zhou, "Experimental study on EHD flow transition in a small scale wire-plate ESP," Measurement Science Review, vol. 16, no. 3, pp. 134-141, 2016.
    [13] J. Podliński, J. Dekowski, J. Mizeraczyk, D. Brocilo, and J.-S. Chang, "Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency," Journal of Electrostatics, vol. 64, no. 3-4, pp. 259-262, 2006.
    [14] L. Leger, E. Moreau, and G. G. Touchard, "Effect of a DC corona electrical discharge on the airflow along a flat plate," IEEE Transactions on Industry Applications, vol. 38, no. 6, pp. 1478-1485, 2002.
    [15] S. Kim and K. Lee, "Experimental study of electrostatic precipitator performance and comparison with existing theoretical prediction models," Journal of Electrostatics, vol. 48, no. 1, pp. 3-25, 1999.
    [16] U. Khaled and A. Z. Eldein, "Experimental study of V–I characteristics of wire–plate electrostatic precipitators under clean air conditions," Journal of Electrostatics, vol. 71, no. 3, pp. 228-234, 2013.
    [17] Y. L. M. Creijghton, "Pulsed positive corona discharges : fundamental study and application to flue gas treatment," Department of Electrical Engineering, pp. 11-19, 1994.
    [18] S. Ahmad and J. Smail, "The optimum operation conditions for electrostatic precipitator (ESP) in particulate emitter industries," International Conference on Pure and Applied Sciences, pp. 145-153, 2018.
    [19] W. C. Hinds, "Aerosol technology: properties, behavior, and measurement of airborne particles," John Wiley & Sons, pp. 284-297, 2012.
    [20] T. Y. Wen, "High-efficiency electrostatic precipitators," University of Washington, 2015.
    [21] R. C. Flagan and J. H. Seinfeld, "Fundamentals of air pollution engineering," Courier Corporation, 2012.
    [22] [22] J. C. Liu, A. Wilson, L. J. Mickley, F. Dominici, K. Ebisu, Y. Wang, M. P. Sulprizio, R. Peng, X. Yue, J. Y. Son, G. B. Anderson, and M. L. Bella, "Wildfire-specific fine particulate matter and risk of hospital admissions in 57 urban and rural counties," Epidemiology, vol. 28, no. 1, p. 77, 2017.
    [23] Z. Li, M. Lao, S. K. Phang, M. A. Hamid, K. Z. Tang, and F. Lin, "Development and Design Methodology of an Anti-Vibration System on Micro-UAVs," in International Micro Air Vehicle Conference and Flight Competition (IMAV), 2017, pp. 223-228.
    [24] G. N. M. Plasencia, M. T. Rodríguez, S. C. Rivera, and Á. H. López, "Modelling and Analysis of Vibrations in a UAV Helicopter with a Vision System," International Journal of Advanced Robotic Systems, vol. 9, no. 5, p. 220, 2012.
    [25] 范肖肖, 贺嘉璠, 戚国庆, 李银伢, 盛安冬, "基于多体系统传递矩阵法的四旋翼飞行器振动建模," 電子設計工程, vol. 26, no. 16, 2018.
    [26] W. Theerachaisupakij, S. Matsusaka, M. Kataoka, and H. Masuda, "Effects of wall vibration on particle deposition and reentrainment in aerosol flow," Advanced Powder Technology, vol. 13, no. 3, pp. 287-300, 2002.
    [27] T. MATSUYAMA and H. YAMAMOTO, "The electrostatic force between a charged dielectric particle and a conducting plane," Journal of the Society of Powder Technology, Japan, vol. 34, no. 3, pp. 154-159, 1997.
    [28] G. Ahmadi, S. Guo, and X. Zhang, "Particle adhesion and detachment in turbulent flows including capillary forces," Particulate Science and Technology, vol. 25, no. 1, pp. 59-76, 2007.
    [29] K. L. Mittal and R. Jaiswal, "Particle adhesion and removal," Particulate Science and Technology, 2015.
    [30] B. Nasr, S. Dhaniyala, and G. Ahmadi, "Particle Resuspension From Surfaces: Overview of Theoretical Models and Experimental Data," in Developments in Surface Contamination and Cleaning: Types of Contamination and Contamination Resources: Elsevier, 2017, pp. 55-84.
    [31] C. Zheng, C. Liang, S. Liu, Z. Yang, Z. Shen, Y. Guo, Y. Zhang, and X. Gao, "Balance and stability between particle collection and re-entrainment inawide temperature-range electrostatic precipitator," Powder Technology, vol. 340, pp. 543-552, 2018
    [32] M. A. S. Quintanilla, J. M. Valverde, A. Castellanos, D. Lepek, R. Pfeffer, and R. N. Dave, "Nanofluidization as affected by vibration and electrostatic fields," Chemical Engineering Science, vol. 63, no. 22, pp. 5559-5569, 2008/11/01
    [33] S. H. Huang and C. C. Chen, "Loading characteristics of a miniature wire-plate electrostatic precipitator," Aerosol Science and Technology, vol. 37, no. 2, pp. 109-121

    QR CODE