簡易檢索 / 詳目顯示

研究生: 陳建瑋
Chien-Wei Chen
論文名稱: 光學模擬矽薄膜疊層太陽能電池並最佳化表面織構參數以增進光電轉換效率
Optical simulation of silicon thin-film tandem solar cells and optimization of surface texturing design parameters for improving energy conversion efficiency
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 黃柏仁
Bohr-Ran Huang
洪儒生
Lu-Sheng Hong
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 112
中文關鍵詞: 薄膜太陽能電池疊層電池表面織構
外文關鍵詞: thin film solar cells, tandem cells, surface textured
相關次數: 點閱:324下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中,我們使用商用光學模擬軟體FRED並利用光線追跡 (Ray Tracing) 技術,模擬表面織構散射結構,探討不同參數的情況下的光學特性。首先討論不同的散射體直徑對於四種入射光波長550nm、700nm、900nm及波長1200nm,從霧度及等效光程長度比來探討散射效果的優劣,進而確定適用於非晶矽太陽能電池的散射體尺寸的分佈範圍。並再就散射體的覆蓋密度作探討,發現其覆蓋密度會與等效光程長度比呈線性關係。而後模擬在不同入射光波長的主動層吸收率,換算為外部量子效率,並且分別探究單接面(Single junction)以及疊層(Tandem)電池,單接面電池主動層材料使用a-Si:H (氫化非晶矽)而疊層則是增加了μc-Si:H (氫化微晶矽),再計算出在標準太陽光譜下的光電流及光電轉換效率。
模擬出的結果,在單接面電池的部分,最佳尺寸我們設定為0.05μm(+/-5%),結果顯示,散射層可讓光電流值與光電轉換效率都增加約12%。另外在疊層電池方面,我們選用兩種不同的散射體尺寸做比較,分別為0.055μm(+/-5%)以及0.075μm(+/-5%),從模擬結果得知,與無散射層的模型比較,其散射層讓短路電流密度分別增加了25.7%與22.0%,並都達到了15%的光電轉換效率。


In this work, we used commercial optical simulation software FRED to simulate surface-textured solar cells and to study the optical properties under various conditions. First we studied the scattering efficiency in terms of haze and equivalent optical path length factor as a function of scatter size for four incident light wavelengths: 550nm, 700nm, 900nm and 1200nm.Thus the ideal range in scatter size for silicon thin-film solar cells was obtained. After that, we studied and found a linear relationship between the surface coverage percentage of scatters and the equivalent optical path length factor. Then we carried out the simulations of single-junction and tandem cells respectively and obtained the absorptance of the active layers versus incident light wavelength. The materials used for the single junction and tandem cells were a-Si: H (hydrogenated amorphous silicon) and μc-Si: H (hydrogenated microcrystalline silicon), respectively. Consequently the external quantum efficiency versus incident wavelength, the short-circuit current density and the energy conversion efficiency can be obtained under standard 1-sun AM1.5G solar spectrum.
In the single-junction cell simulation, the ideal scatter size chosen was 0.05μm (+ / -5%), and the results showed that the scattering layer improved both the short-circuit current density and the conversion efficiency by about 12%. In the tandem cell simulation, compared to the one without scatters, the two tandem cells with different scatter sizes of
III
0.055μm (+ / -5%) and 0.075μm (+ / -5%) helped increase the short-circuit current density by 25.7% and 22.0%, respectively, and both have reached 15% in conversion efficiency.

摘要 .......................................................................................................... I Abstract ................................................................................................. II 致謝 ........................................................................................................ IV 目錄 ......................................................................................................... V 圖片目錄 .............................................................................................. VIII 表格目錄 .............................................................................................. XIII 第一章 導論 ........................................................................................ 1 1.1太陽能電池現況 ....................................................................... 1 1.2 文獻回顧 ................................................................................. 4 1.3 研究方向與目的 .................................................................... 11 第二章 原理介紹 ................................................................................. 13 2.1 太陽能電池............................................................................ 13 2.1.1 太陽光譜 .................................................................... 13 2.1.2 太陽電池原理 ............................................................ 15 2.1.3量子效率 ..................................................................... 19 2.2 散射理論 ............................................................................... 21 第三章 實驗方法 ................................................................................. 25 3.1 光學模擬軟體FRED之簡介與概論 ....................................... 25 VI 3.1.1 FRED簡介 ................................................................... 25 3.1.2 FRED各項參數概述 ................................................... 26 3.2模擬模型設定 ......................................................................... 39 3.2.1設定光源 ..................................................................... 40 3.2.3設定樣品結構與材質 ................................................. 40 3.2.3設定電池層 ................................................................. 43 3.3模擬軟體使用中的問題與解決辦法 ...................................... 44 3.3.1鑲嵌散射體 ................................................................. 44 第四章 結果與討論 ............................................................................. 48 4.1球型散射體最佳化尺寸 ......................................................... 48 4.1.1霧度與等效光程長度比之分析 .................................. 48 4.1.2 散射體材料之分析 .................................................... 53 4.2 入射光受散射體密度影響 .................................................... 57 4.2.1 擴散穿透率(Diffuse transmittance)與霧度(Haze)隨覆蓋密度之分析 ................................................................ 57 4.2.2散射光角度分佈隨散射體密度之分析 ...................... 62 4.3非晶矽薄膜太陽能電池之模擬分析 ...................................... 66 4.3.1 矽薄膜太陽能電池模型介紹與其模擬結果 ............. 66 4.3.2 材料吸收率對外部量子效率之影響 ......................... 87 VII 第五章 結論與未來展望 ...................................................................... 90 參考文獻 ............................................................................................... 92

[1]National Renewable Energy Laboratory, “Best Research-cell efficiencies,” website: http://www.nrel.gov/ncpv/
[2]O. Isabella, K. Jager, J. Krč., and M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” The annual workshop on semiconductor advances for future electronics and sensors, pp.476-479, 2008
[3]T. Oyama, M. Kambe, N. Taneda, and K. Masumo, “Requirements for TCO substrate in Si-based thin film solar cells – toward tandem,“ Mater. Res. Soc. Symp. Proc. Vol.1101, 2008.
[4]J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films Vol.518, pp.3054–3058, 2010.
[5]M. Dimer, “Improved TCO for thin-film silicon solar cells,” Thin-Film Industry Forum, Berlin, 2010.
[6]ITRI Forum 2009, “Photovoltaic Research and Development at Photovoltaics Technology Center of ITRI,” 2009.
[7] Subhendu Guha, JeffreyYang, BaojieYan, “High efficiency
93
multi-junctionthin film siliconcellsincorporating nanocrystallinesilicon”,
[8]. Subhendu Guha, Jeffrey Yang, Baojie Yan, “High efficiency multi-junction thin film silicon cells incorporating nanocrystalline silicon,” Solar Energy Material & Solar Cells, 2013
[9]. K. Soderstrom, F.-J. Haug, J. Escarre, C. Pahud, R. Biron, C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n-i-p thin-film silicon solar cells,” Solar Energy Material & Solar Cells, Vol. 95, pp.3585-3591, 2011
[10]. L. Zeng, P. Bermel, Y. Yi, B.A. Alamariu, K. A. Broderick, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett, Vol. 93, 221105, 2008
[11]. K. Soderstrom, G. Bugnon, F.-J. Haug, S. Nicolay, C. Ballif, “Experimental study of flat light-scattering substrates in thin-film silicon solar cells,” Solar Energy Material & Solar Cells, Vol. 101, pp.193-199, 2012
[12]. James R. Nagel and Michael A. Scarpulla, “Enhanced light absorption in thin film solar cells with embedded dielectric nanoparticles: Induced texture dominated Mie scattering,” Appl. Phys. Lett, Vol. 102, 151111, 2013
[13]. Paul G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.W. Lin, G. A. Ozin, N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxid and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Solar Energy Material & Solar Cells, Vol. 102, pp.173-183, 2012
[14]. X. Meng, V. Depauw, G.Gomard, O.-E. Daif, C. Trompoukis, E. Drouard, A. Fave, F. Dross, I. Gordon and C.Seassal, “Design and frabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells,” SPIE. Vol. 8312 (831207-1), 2011
94
[15]. X. Meng, G. Gomard, O.-E. Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P.-R. I Cabarrocas and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: Design, fabrication and experimental investigation,” Solar Energy Material & Solar Cells, Vol. 95, pp.S32-S38, 2011
[16]. E. Drouard, G. Gomard, X. Meng, O.E. Daif, A. Kaminski-Cachopo, A. Fave, M. Lemiti, C.Seassal, “Photonic Crystal Based Structures for Ultra-Thin Film Solar Cells,” IEEE. ICTON, 2010
[17]R. Hulstrom, R. Bird, and C. Riordan, “SPECTRAL SOLAR IRRADIANCE DATA SETS FOR SELECTED TERRESTRIAL CONDITIONS,” Solar cell Vol.15, pp.365-391, 1985.
[18]黃惠良、曾百亨,太陽電池Solar cells,五南圖書出版公司, 2008。
[19] H. C. van de Hulst, “Light Scattering by Small Particles,” Dover, New York, 1981.

QR CODE