簡易檢索 / 詳目顯示

研究生: 蔡豫翔
Yu-Hsiang Tsai
論文名稱: Cu2ZnSn(Sx, Se1-x)4奈米晶體作為吸光層之薄膜太陽能電池
Cu2ZnSn(S,Se)4 Nanocrystals as Light Harvesting Layer for Thin Film Solar Cells
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳貞夙
Jen-Sue Chen
吳季珍
Jih-Jen Wu
陳景翔
Ching-hsiang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 硫化銅鋅錫奈米晶體硒化反應
外文關鍵詞: CZTS, nanocrystals, selenization reaction
相關次數: 點閱:164下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,硫化銅鋅錫奈米晶體備受期待,因為其具有低成本、毒性較低、地殼蘊藏量高、吸收係數高(>104 cm-1)等特性。因此,可廣泛用於太陽光能的吸收並加以運用。且其能隙值約為1.3~1.8 eV,適合用於薄膜太陽能電池吸收層之使用。在本研究,主要使用注入法以醋酸銅、含水氯化錫與碘化鋅及硫粉為反應前驅物,溶在油胺中並在高溫下反應預合成硫化銅鋅錫奈米晶體。隨後,將硫化銅鋅錫奈米晶體與己硫醇配製成漿料,進行薄膜塗佈的探討。在此,比較不同的塗佈方法對於硫化銅鋅錫薄膜成膜之性質比較。同時,藉由改變不同硒化反應溫度、升溫時間及持溫時間,探討薄膜之成膜性及薄膜性質分析,並以場發式電子顯微鏡觀察薄膜成膜性,以及拉曼光譜與XRD光譜分析薄膜轉相及晶粒成長。


    Recently, copper zinc tin sulfide (Cu2ZnSnS4, CZTS) has attracted great attention as a material of earth-abundant, non-toxicity, and with novel absorption coefficient (>10-4 cm-1) to become a promising solid-state photovoltaic device material. CZTS is suitable light-harvesting materials for thin film solar cell because of band gap is about 1.3-1.8eV. In this study, CZTS nanocrystals are synthesized by injection method using copper (II) acetate, zinc iodide, tin(IV) chloride tetrahydrate, elemental sulfur as precursors in the presence of oleylamine at high reaction temperature. CZTS nanocrystals with hexanethiol formulated as ink to coat on the Mo-coated glass substrate. The CZTS thin films were coated with different coating methods for comparison. To investigate the nature of the film and analysis the film properties by changing the selenization reaction time, heating time and maintain time.The thin film morphology is observed by high resolution field-emission scanning electron microscope. By Raman and X-ray diffractometer (XRD) analysis to demonstrate the phase transition and grain growth.

    中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章、緒論 1 1-1前言: 1 1-2 研究動機與目的 1 第二章、理論基礎與文獻回顧 3 2-1太陽能電池歷史發展 3 2-2 半導體光伏材料簡介 4 2-3 太陽能電池簡介 7 2-4 太陽能電池原理 11 2-4-1 p-n junction 11 2-5硫化銅鋅錫與硒化銅鋅錫奈米晶體的介紹與特性 12 2-6硒硫化銅鋅錫薄膜太陽能電池的發展現況 15 2-6-1預合成硫化銅鋅錫奈米晶體當前驅物 17 2-6-2硫化銅鋅錫溶液當前驅物 26 2-6-3硫化銅鋅錫奈米晶體/硫化銅鋅錫溶液當前驅物 32 2-7 CZTS太陽能電池的組成結構 38 2-7-1 鈉玻璃基板 38 2-7-2 緩衝層 41 2-7-3 透明導電層 42 第三章、實驗方法與步驟 43 3-1 實驗流程圖 43 3-1-1 元件實驗流程 43 3-2 實驗藥品與設備儀器 44 3-2-1 實驗藥品 44 3-2-2 實驗設備 49 3-3 實驗分析儀器 50 3-4-1注入法合成硫化銅鋅錫奈米晶體 62 3-4-2元件製作流程 64 第四章、結果與討論 66 4-1 注入法合成硫化銅鋅錫奈米粒子之特性分析 66 4-2 鉬電極沉積條件探討 74 4-3硫化銅鋅錫奈米粒子之硒化成模性質分析 76 4-3-1 硫化銅鋅錫奈米晶體在不同溶劑分散性之比較 76 4-3-2旋轉塗佈法與網印刮刀塗佈法之比較 77 4-3-3 硒化條件之探討 80 4-4 鋁摻雜氧化鋅鍍層條件探討 92 第五章、結論 95 第六章、文獻回顧 96

    1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Progress in Photovoltaics: Research and Applications, 19, 894 (2011)
    2. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Advanced Energy Materials, 4 (2014)
    3. D. Chapin, C. Fuller, and G. Pearson, Journal of Applied Physics, 25, 676 (1954)
    4. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, Applied Physics Letters, 73, 1991 (1998)
    5. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991)
    6. NREL, http://www.nrel.gov/,
    7. O. Schultz, S. W. Glunz, and G. P. Willeke, Progress in Photovoltaics: Research and Applications, 12, 553 (2004)
    8. G. Papadopoulos, L. Boivin, and N. G. Tarr, Canadian Journal of Physics, 69, 479 (1991)
    9. B. Yan, G. Yue, X. Xu, J. Yang, and S. Guha, Physica Status Solidi (a), 207, 671 (2010)
    10. J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, and I. Forbes, Physica Status Solidi (b), 245, 1772 (2008)
    11. A. Khare, A. W. Wills, L. M. Ammerman, D. J. Norris, and E. S. Aydil, Chemical Communications, 47, 11721 (2011)
    12. C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, Journal of the American Chemical Society, 131, 12554 (2009)
    13. C. Zou, L. Zhang, D. Lin, Y. Yang, Q. Li, X. Xu, X. a. Chen, and S. Huang, CrystEngComm, 13, 3310 (2011)
    14. F.-J. Fan, Y.-X. Wang, X.-J. Liu, L. Wu, and S.-H. Yu, Advanced Materials, 24, 6158 (2012)
    15. H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, and Y. Zhang, CrystEngComm, 13, 2222 (2011)
    16. 周庭帆, 國立台灣科技大學, Synthesis of Quinary Cu2ZnSn(Sx, Se1-x)4 (CZTSSe) Nanocrystals with Band Structure (2013)
    17. J. P. Leitao, N. M. Santos, P. A. Fernandes, P. M. P. Salome, A. F. da Cunha, J. C. Gonzalez, and F. M. Matinaga, Thin Solid Films, 519, 7390 (2011)
    18. P. M. P. Salome, P. A. Fernandes, A. F. da Cunha, J. P. Leitao, J. Malaquias, A. Weber, J. C. Gonzalez, and M. I. N. da Silva, Solar Energy Materials and Solar Cells, 94, 2176 (2010)
    19. G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, Progress in Photovoltaics: Research and Applications, 17, 315 (2009)
    20. J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, and K.-H. Kim, Solar Energy Materials and Solar Cells, 75, 155 (2003)
    21. R. Adhi Wibowo, E. Soo Lee, B. Munir, and K. Ho Kim, Physica Status Solidi (a), 204, 3373 (2007)
    22. K. Moriya, K. Tanaka, and H. Uchiki, Japanese Journal of Applied Physics, 46, 5780 (2007)
    23. T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi, and H. Katagiri, Japanese Journal of Applied Physics, 44, 783 (2005)
    24. S. M. Pawar, B. S. Pawar, K. V. Gurav, D. W. Bae, S. H. Kwon, S. S. Kolekar, and J. H. Kim, Japanese Journal of Applied Physics, 51, 10NC27 (2012)
    25. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, and R. Noufi, Solar Energy Materials and Solar Cells, 101, 154 (2012)
    26. K. Wang, O. Gunawan, T. Todorov, B. Shin, S. Chey, N. Bojarczuk, D. Mitzi, and S. Guha, Applied Physics Letters, 97, 143508 (2010)
    27. S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, Energy & Environmental Science, 5, 7060 (2012)
    28. T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D. B. Mitzi, Advanced Energy Materials, 3, 34 (2013)
    29. M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, Energy & Environmental Science, 7, 1029 (2014)
    30. Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, and R. Agrawal, Journal of the American Chemical Society, 132, 17384 (2010)
    31. C. K. Miskin, W.-C. Yang, C. J. Hages, N. J. Carter, C. S. Joglekar, E. A. Stach, and R. Agrawal, Progress in Photovoltaics: Research and Applications, n/a (2014)
    32. Q. Guo, G. M. Ford, W.-C. Yang, C. J. Hages, H. W. Hillhouse, and R. Agrawal, Solar Energy Materials and Solar Cells, 105, 132 (2012)
    33. K. Woo, Y. Kim, and J. Moon, Energy & Environmental Science, 5, 5340 (2012)
    34. S. K. Saha, A. Guchhait, and A. J. Pal, Physical Chemistry Chemical Physics, 14, 8090 (2012)
    35. A. Carrete, A. Shavel, X. Fontane, J. Montserrat, J. Fan, M. Ibanez, E. Saucedo, A. Perez-Rodriguez, and A. Cabot, Journal of the American Chemical Society, 135, 15982 (2013)
    36. H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films, 517, 2455 (2009)
    37. Y. Cao, M. S. Denny Jr, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, and D. Radu, Journal of the American Chemical Society, 134, 15644 (2012)
    38. G. Wang, W. Zhao, Y. Cui, Q. Tian, S. Gao, L. Huang, and D. Pan, ACS Applied Materials & Interfaces, 5, 10042 (2013)
    39. Y. Sun, Y. Zhang, H. Wang, M. Xie, K. Zong, H. Zheng, Y. Shu, J. Liu, H. Yan, M. Zhu, and W. Lau, Journal of Materials Chemistry A, 1, 6880 (2013)
    40. J. W. Cho, A. Ismail, S. J. Park, W. Kim, S. Yoon, and B. K. Min, ACS Applied Materials & Interfaces, 5, 4162 (2013)
    41. T. Schnabel, M. Low, and E. Ahlswede, Solar Energy Materials and Solar Cells, 117, 324 (2013)
    42. C. M. Sutter-Fella, J. A. Stuckelberger, H. Hagendorfer, F. La Mattina, L. Kranz, S. Nishiwaki, A. R. Uhl, Y. E. Romanyuk, and A. N. Tiwari, Chemistry of Materials, (2014)
    43. K. Zong, Y. Sun, Y. Zhang, H. Wang, J. Liu, and H. Yan, Journal of Materials Chemistry A, (2013)
    44. Q. Tian, X. Xu, L. Han, M. Tang, R. Zou, Z. Chen, M. Yu, J. Yang, and J. Hu, CrystEngComm, 14, 3847 (2012)
    45. T. Prabhakar and N. Jampana, Solar Energy Materials and Solar Cells, 95, 1001 (2011)
    46. H. Zhou, T.-B. Song, W.-C. Hsu, S. Luo, S. Ye, H.-S. Duan, C.-J. Hsu, W. Yang, and Y. Yang, Journal of the American Chemical Society, 135, 15998 (2013)
    47. J. V. Li, D. Kuciauskas, M. R. Young, and I. L. Repins, Applied Physics Letters, 103 (2013)
    48. J. J. Scragg, J. T. Watjen, M. Edoff, T. Ericson, T. Kubart, and C. Platzer-Bjorkman, Journal of the American Chemical Society, 134, 19330 (2012)
    49. S. Lopez-Marino, M. Placidi, A. Perez-Tomas, J. Llobet, V. Izquierdo-Roca, X. Fontane, A. Fairbrother, M. Espindola-Rodriguez, D. Sylla, and A. Perez-Rodriguez, Journal of Materials Chemistry A, 1, 8338 (2013)
    50. L. Larina, D. Shin, J. H. Kim, and B. T. Ahn, Energy & Environmental Science, 4, 3487 (2011)
    51. G. Wang, S. Wang, Y. Cui, and D. Pan, Chemistry of Materials, 24, 3993 (2012)
    52. T.-L. Li, Y.-L. Lee, and H. Teng, Energy & Environmental Science, 5, 5315 (2012)
    53. S. Bloxham, O. Eicher-Lorka, R. Jakubenas, and G. Niaura, Chemija, 13, 190 (2002)

    QR CODE