簡易檢索 / 詳目顯示

研究生: 王信翔
Sin-Siang Wang
論文名稱: 磁控濺鍍備製CIGS太陽能電池吸收層與TiO2薄膜之研究
The study on the CIGS solar cell absorber layer and TiO2 thin films by magnetron sputtering
指導教授: 修芳仲
Fang-jung Shiou
口試委員: 周振嘉
Chen-chia Chou
周賢鎧
Shyan-kay Jou
許春耀
Chun-yao Hsu
郭金國
Chin-guo Kuo
蔡豐羽
Feng-yu Tsai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 143
中文關鍵詞: 銅銦鎵硒(CIGS)太陽能電池四元合金靶材前驅層快速熱處理製程硒化反應
外文關鍵詞: quaternary-alloy target, rapid thermal process, precursor, selenized
相關次數: 點閱:463下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究利用非平衡磁控濺鍍(Unbalance magnetron sputtering)沉積銅銦鎵硒(CIGS)太陽能電池及TiO2薄膜。於不同直流功率及不同製程壓力沉積Mo背電極,顯示高直流功率(470 W)和低製程壓力(1 mtorr)條件下,可獲得較佳的Mo薄膜電阻率(1.3×10-5 Ω-cm)及反射率(62 %)。本研究以兩種不同方式製備CIGS太陽能電池吸收層,方式1: 使用CIGS四元合金(Cu:In:Ga:Se=25:17.5:7.5:50 at%)靶材,以射頻濺鍍沉積CIGS太陽能電池吸收層,結果顯示在較低的射頻功率(30 W)及製程壓力(2.5 mtorr)下,CIGS薄膜擁有最佳的元素比例(Cu:In:Se= 1:1:1.6)。方式2: 分別使用Cu0.75Ga0.25靶及In靶,直流濺鍍沉積CuGa (300 nm),改變不同In薄膜沉積時間,獲得適當Cu/(In+Ga)比例分別為0.80、1.00、1.20的前驅層,再經由快速熱處理製程(Rapid thermal processing, RTP),進行硒化反應成為CIGS吸收層。將TiO2薄膜於真空環境中進行退火(200~450 °C),顯示隨著退火溫度的增加,TiO2薄膜結構由非晶轉變為多晶結構,在紅外線波長到可見光範圍內,薄膜光穿透率也隨著退火溫度的提升獲得良好的改善。最後組合Mo、CIGS、In2S3、ZnO、GZO、TiO2及Al薄膜形成完整太陽能電池,量測其I-V曲線,顯示以方式1製備的CIGS吸收層經退火300 °C後,可穫得光電轉換效率(η)= 3.4%;以方式2(Cu/(In+Ga) 比例為1.00) 製備的CIGS吸收層經退火300 °C後,可穫得光電轉換效率(η)= 6.24%。


    CuInGaSe2 solar cell and TiO2 thin film were grown onto soda-lime glass substrates by unbalance magnetron sputtering. The Mo thin film back contact layer used different direct current (D.C.) power and process pressure. By applying higher D.C. power (470 W) and lower process pressure (1 mtorr), findings show that the electrical resistivity of Mo films was 1.3 × 10-5 Ω-cm and the reflectivity was approximately 62%. In this study, the two different manufacturing processes were compared following the same absorber layer. The absorber layer of CIGS thin film were deposited by radio frequency (R.F.) magnetron sputtering, using the CIGS quaternary-alloy target (Cu:In:Ga:Se=25:17.5:7.5:50 at%). The results indicated that the best element ratio of CIGS thin film (Cu:In:Se= 1:1:1.6) could be achieved under lower R.F. power (30 W) and process pressure (2.5 mtorr). Another process, using D.C. magnetron sputtering of Cu0.75Ga0.25 alloy and In elemental targets, using a rapid thermal process of stacked elemental layers. The bottom layer of a 300 nm thick CuGa film was deposited. Thickness of the In layer was adjusted by adjusting the deposition time, to produce precursors with Cu/(In +Ga) atomic ratios of 0.80, 1.00, and 1.20. The optimized precursor was selenized under various temperatures, and the performance of the fabricated CIGS solar cells was analyzed.
    TiO2 thin films annealed under different temperature (200~450 °C). The result showed that the TiO2 structure was changed from amorphous to polycrystalline when increase the annealing temperature. The TiO2 films optical transmittance was improved after annealed.
    The structures of the CIGS thin film solar cell were Glass/Mo/CIGS/In2S3/ZnO/GZO/TiO2/Al. The experimental results showed that the absorber layer by CIGS quaternary-alloy targets, revealed a conversion efficiency of 3.4%. On the other hand, the absorber layer by means of both Cu0.75Ga0.25 alloy and In targets with stacked elemental layers. The stoichiometry of the metallic precursor was optimized, showed a conversion efficiency of 6.24% for the CIGS thin film solar cells.

    中文摘要 Ⅰ Abstract III 誌謝 V 目錄 VI 符號目錄 XII 圖目錄 XIII 表目錄 XIX 第一章 緒論 1 1.1 前言與研究背景 1 1.2 研究動機與目的 3 1.3 太陽能電池背景與種類 7 1.4 文獻回顧 10 1.4.1 抗反射層相關文獻回顧 10 1.4.2 透明導電膜相關文獻回顧 13 1.4.3 緩衝層相關文獻回顧 18 1.4.4 CIGS吸收層相關文獻回顧 19 1.4.5 金屬Mo電極相關文獻回顧 22 1.5 論文架構 24 第二章 實驗相關理論 26 2.1 抗反射薄膜 26 2.1.1 TiO2的材料特性 26 2.2 透明導電薄膜 27 2.2.1 GZO薄膜導電性質 27 2.2.2 GZO薄膜光學性質 29 2.3 In2S3緩衝層 30 2.4 CIS與CIGS吸收層結構與特性 30 2.4.1 光伏效應 (Photovoltaic effect) 32 2.5 背電極Mo薄膜 36 2.6 薄膜沉積理論 38 2.6.1 薄膜成核現象 38 2.6.2 鍍層微觀結構 40 第三章 實驗方法與步驟 42 3.1 實驗規劃與流程 42 3.2 實驗材料 49 3.2.1 靶材 49 3.2.2 基材 50 3.2.3 工作氣體 50 3.3 實驗設備 50 3.3.1 濺鍍系統 50 3.4 實驗基材前處理 52 3.5 薄膜分析設備 52 3.5.1 表面輪廓儀 (Alpha-step, α-step) 52 3.5.2 X光繞射儀 (X-ray diffraction, XRD) 53 3.5.3 原子力顯微鏡 (Atomic force microscope, AFM) 55 3.5.4 場發式掃描電子顯微鏡 (Field emission scanning elec-tron microscope, FESEM) 55 3.5.5 可見光光譜分析儀 (Uv-vis spectroscopy, UV-VIS) 56 3.5.6 四點探針 (Four-point probe) 57 3.5.7 霍爾效應分析 (Hall effect) 57 3.5.8 X光螢光分析儀 (X-ray fluorescene, XRF) 58 3.5.9 電壓電流曲線 (I-V curve) 59 3.5.10 拉曼光譜分析儀 (Raman xpectroscopy) 60 第四章 實驗結果與討論 63 4.1 沉積Mo薄膜 63 4.1.1 直流功率對Mo薄膜的影響 63 4.1.2 製程壓力對Mo薄膜的影響 68 4.2 製備CIGS薄膜於Mo/glass 73 4.2.1 利用四元素CIGS靶材製備太陽能電池吸收層 74 4.2.1.1 射頻功率對四元素靶材沉積吸收層的影響 74 4.2.1.2 製程壓力對四元素靶材沉積吸收層的影響 78 4.2.2 不同Cu/(In+Ga)比例之CIGS太陽能電池吸收層 80 4.2.2.1 直流濺鍍不同Cu/(In+Ga)比例之CIG金屬前驅層 80 4.2.2.2 不同硒化溫度與相變化情形 90 4.2.2.3 Glass/Mo/CIG金屬前驅層硒化 95 4.3 製備In2S3緩衝層 98 4.4 製備GZO薄膜於不同厚度的ZnO緩衝層 100 4.5 製備TiO2薄膜 107 4.5.1 退火溫度對TiO2薄膜的影響 107 4.6 太陽能電池元件效率量測 114 第五章 結論與未來展望 119 5.1 結論 119 5.2 未來展望 121 參考文獻 122 附錄(一) TiO2薄膜降解亞甲基藍測試 135 附錄(二) TiO2薄膜水滴接觸角測試 137 附錄(三) TiO2薄膜抗拉強度測試 139

    1. 莊嘉琛,「太陽能工程一太陽電池篇」,全華科技圖書股份有限公司,pp. 7-14,1997。
    2. 陳志信,「太陽能電池,電機月刊」,pp. 244-256,2005。
    3. 楊素華、蔡泰成,「太陽能電池」,科學發展,pp. 51-55,2005。
    4. 查丁壬,「認識太陽能電池」,中華太陽能聯誼會,2003。
    5. J. Yang, A. Banerjee, “Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency,” 26th Solar Energy Materials & Solar Cells, pp. 563-568, 1997.
    6. S. Marsillac, S. Dorn, R. Rocheleau, E. Miller, “Low-temperature deposition of Cu(InGa)Se2 solar cells on various substrates,” Solar Energy Materials & Solar Cells, Vol. 82, pp. 45-52, 2004.
    7. J. Hedstrom, H. Ohlsen, et al., “ZnO/CdS/Cu(In,Ga)Se2 :thin film solar cells with improved performance,” IEEE, pp. 364-371, 1993.
    8. W. Eisele, et al., “New-cadmium-free buffer layers as heterojunction partners on Cu(In,Ga)(S,Se)2 :thin film solar cells,” IEEE, pp. 692-695, 2000.
    9. G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Solar Energy Materials & Solar Cells, Vol. 93, pp. 1488-1491, 2009.
    10. U. Rau, “Electronic Properties of Cu(In,Ga)Se2 Thin-Film Solar Cells-An Update,” Adv. In Solid State Phys, Vol. 44, pp. 27-39, 2004.
    11. X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, D. S. Albin, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, P. Sheldon, “16.5% Efficient CdS/CdTe Polycrystalline Thin-film Solar Cell,” 17th European Photovoltaic Solar Energy Conference Vol. 2, pp. 995-1000, 2002.
    12. L. Bay, K. West, “An equivalent circuit approach to the modeling of the dynamics of dye sensitized solar cells,” Solar Energy Materials & Solar Cells, Vol. 87, pp. 613-628, 2005.
    13. W. J .Lee, E. Ramasamy, D. Y. Lee, “Effect of electrode geometry on the photovoltaic performance of dye-sensitized solar cells,” Solar Energy Materials & Solar Cells, Vol. 93, pp. 1448-1451, 2009.
    14. 月刊ディスプレイ, 6月號, 2011。
    15. H. J. Moller, “Semiconductors for Solar Cells,” Artech House, Boston, p. 35, 1993.
    16. NREL’s Standar Dataset: http://rredc.nrel.gov/solar/spectra/am1.5/.
    17. S. M. Jung, Y. H. Kim, S. I. Kim, S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for III-V soalr cell,” Current Applied Physics, Vol. 1, pp. 538-541, 2011.
    18. W. H. Wang, S. Chao, “Annealing effect on ion-beam-sputtered titanium dioxide film,” OPTICS LETTERS, Vol. 23, pp. 1417-1419, 1998.
    19. P. K. Song, Y. Irie, Y. Shigesato, “Crystallinity and photocatalytic activity of TiO2 film deposited by reactive sputtering with radio frequency substrate bias,” Thin Solid films, Vol. 496, pp. 121-125, 2006.
    20. O. Treichel, V. Kirchhoff, “The influence of pulsed magnetron sputtering on topography and crystallinity of TiO2 films on glass,” Surface and Coatings Technology, Vol. 123, pp. 268-272, 2000.
    21. S. Chao, W. H. Wang, C. C. Lee, “Low-loss dielectric mirror with ion-beam-sputtered TiO2-SiO2 mixed films,” APPLIED OPTICS, Vol. 40, pp. 2177-2182, 2001.
    22. H. Ohsaki, Y. Tachibana, A. Hayashi, A. Mitsui, Y. Hayashi, “High rate sputter deposition of TiO2 from TiO2-x target,” Thin Solid Films, Vol. 351, pp. 57-60, 1999.
    23. L. Chen, M. E. Graham, G. Li, K. A. Gray, “Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition,” Thin Solid Films, Vol. 515, pp. 1176-1181, 2006.
    24. S. Ohno, N. Takasawa, Y. Sato, M. Yoshikawa, K. Suzuki, P. Frach and Y. Shigesato, “Photocatalytic TiO2 films deposited by reactive magnetron sputtering with unipolar pulsing and plasma emission control systems,” Thin Solid Films, Vol. 496, pp. 126-130, 2006.
    25. T. Lim, Won, H. Lee, Chang, “ Highly oriented ZnO thin films deposited on Ru/Si substrates,” Thin Solid Films, Vol. 353, pp. 12-15, 1999.
    26. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semiconductor Science Technology, Vol. 20, pp. 35-44, 2005.
    27. V. Assuncao, E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. Aguas, R. Martins, “New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering,” Thin Solid Films, Vol. 442, pp. 102-106, 2003.
    28. H. Jianhua and R. G. Gordon, “Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium,” Journal of Applied Physics, Vol. 72, pp. 5381-5392, 1992.
    29. E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, S. Y. Lee, “Effect of The Variation of Films Thickness on The Structural and Optical Properties of ZnO Thin films Deposition on Sapphire Substrate Using PLD,” Apply Surface Science, Vol. 186, pp. 474-476, 2002.
    30. T. Minami, S. Ida, T. Miyata, “High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation,” Thin Solid Films, Vol. 416, pp. 92-96, 2002.
    31. P. K. Songa, M. Watanabe, M. Kon, A. Mitsui, Y. Shigesato, “Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering,” Thin Solid Films, Vol. 411, pp. 82-86, 2002.
    32. T. H. Kim, S.H. Jeong, I. S. Kim, S. S. Kim, B. T. Lee, “Magnetron sputtering growth and characterization of high quality single crystal Ga-doped n-ZnO thin films,” Semiconductor Science Technology, Vol. 20, pp. 43-46, 2005.
    33. T. Minami, S. Ida, T. Miyata, “High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation,” Thin Solid Films, Vol. 416, pp. 92-96, 2002.
    34. Q. B. Ma, Z. Z. Ye, H. P. He, S. H. Hu, J. R. Wang, L. P. Zhu, Y. Z. Zhang, B. H. Zhao, “Structural, electrical, and optical properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering,” Journal of Crystal Growth, Vol. 256, pp. 64–68, 2007.
    35. Q. B. Ma, Z. Z. Ye, H. P. He, J. R. Wang, L. P. Zhu, B. H. Zhao, “Preparation and characterization of transparent conductive ZnO:Ga films by DC reactive magnetron sputtering,” Materials Characterization, Vol. 59, pp. 124-128, 2008.
    36. X. Yua, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, “Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature,” Journal of Crystal Growth, Vol. 274, pp. 474-479, 2005.
    37. Q. B. Ma, Z. Z. Ye, H. P. He, L. P. Zhu, B. H. Zhao, “Effects of deposi-tion pressure on the properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering,” Materials Science in Semiconductor Processing, Vol. 256, pp. 167–172, 2007.
    38. V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M.E.V. Costa, R. Martinsa, “Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature,” Thin Solid Films, Vol. 427, pp. 401–405, 2003.
    39. V. Assuncao, E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. A. guas, R. Martins, “New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering,” Thin Solid Films, Vol. 442, pp. 102–106, 2003.
    40. X. Yua, J. Ma, F. Jia, Y. Wang, C. Cheng, H. Ma, “Thickness dependence of properties of ZnO:Ga films deposited by rf magnetron sputtering,” Applied Surface Science, Vol. 245, pp. 310–315, 2005.
    41. X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, H. Ma , “Influence of annealing on the properties of ZnO:Ga films prepared by radio frequency magnetron sputtering,” Thin Solid Films, Vol. 483, pp. 296-300, 2005.
    42. H. Chen, W. Li, H. Liu, L. Zhu, “A suitable deposition method of CdS for high performance CdS-sensitized ZnO electrodes: Sequential chemical bath deposition,” ScienceDirect, Vol. 84, pp. 1201-1207, 2010.
    43. S. W. Shin, S. R. Kang, J. H. Yun, A. V. Moholkar, J. H. Moon, J. Y. Lee, J. H. Kim, “Effect of different annealing conditions on the properties of chemically deposited ZnS thin films on ITO coated glass substrates,” Solar Energy Materials & Solar Cells, Vol. 95, pp. 856-863, 2011.
    44. M. Calixto-Rodriguez, H. Martinez, A. Sanchez-Juarez, “AC plasma induced modifications in β-In2S3 thin films prepared by spray pyrolysis,” Thin Solid Films, Vol. 517, pp. 2332-2334, 2009.
    45. A. Rumberg, A. Gerhard, A. Jager-Waldau, M. Ch. Lux-Steiner, “ZnSe buffer prepared by iodine-enhanced chemical vapour deposition for Cu(In,Ga)(Se,S)2-based solar cells,” Solar Energy Materials & Solar Cells, Vol. 75, pp. 1-8, 2003.
    46. S. Ikeda, R. Kamai, S. M. Lee, T. Yagi, T. Harada, M. Matsumura, “A superstrate solar cell based on In2(Se,S)3 and CuIn(Se,S)2 thin films fabricated by electrodeposition combined with annealing,” Solar Energy Materials & Solar Cells, Vol. 95, pp. 1446-1451, 2011.
    47. S. Spiering, D. Hariskos, S. Schoder, M. Powalla, “Stability behavior of Cd-free Cu(In,Ga)Se2 solar modules with In2S3 buffer layer prepared by atomic layer deposition,” Thin Solid Films, Vol. 480-481, pp. 195-198, 2005.
    48. A. Rumberg, Ch. Sommerhalter, M. Toplak, A. Jager-Waldau, M. Ch. Lux-Steiner, “ZnSe thin films grown by chemical vapour deposition for application as buffer layer in CIGSS solar cells,” Thin Solid Films, Vol. 361-362, pp. 172-176, 2000.
    49. G. Gordillo, C. Calderon, “CIS thin film solar cells with evaporated InSe buffer layers,” Solar Energy Materials & Solar Cells, Vol. 77, pp. 163-173, 2003.
    50. D. Y. Lee, B. T. Ahn, K. H. Yoon, J. S. Song, “Effect of first-stage temperature on Cu(In,Ga)Se2 solar cells using the evaporation of binary selenide compounds,” Solar Energy Materials & Solar Cells, Vol. 75, pp. 73-79, 2003.
    51. M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, K. Akimoto, “Effect of Se/(Ga+In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” Journal of Crystal Growth, Vol. 311, pp. 2212-2214, 2009.
    52. V. Alberts, “Band gap optimization in Cu(In1−xGax)(Se1−ySy)2 by con-trolled Ga and S incorporation during reaction of Cu-(In,Ga) intermetallics in H2Se and H2S,” Thin Solid Films, Vol.517, pp. 2115-2120, 2009.
    53. J. A. Frantz, R. Y. Bekele, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, “Cu(In,Ga)Se2 thin films and devices sputtered from a single target without additional selenization,” Thin Solid Films, Vol. 519, pp. 7763-7765, 2006.
    54. C. Y. Su, W. H. Ho, H. C. Lin, C. Y. Nieh, S. C. Liang, “The effects of the morphology on the CIGS thin films prepared by CuInGa single precursor,” Solar Energy Materials & Solar Cells, Vol. 95, pp. 261-263, 2011.
    55. G. S. Chen, J. C. Yang, Y. C. Chan, L. C. Yang, W. Huang, “Another route to fabricate single-phase chalcogenides by post-selenization of Cu-In-Ga precursors sputter deposited from a single ternary target,” Solar Energy Materials & Solar Cells, Vol. 93, pp. 1351-1355, 2009.
    56. D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, S. Kwon, “Ex-situ and in-situ analyses on reaction mechanism of CuInSe2 (CIS) formed by selenization of sputter deposited CuIn precursor with Se vapor,” Solar Energy Materials & Solar Cells, Vol. 95, pp. 2786-2794, 2011.
    57. Y. C. Lin, J. H. Ke, W. T. Yen, S. C. Liang, C. H. Wu, C. T. Chiang, “Preparation and characterization of Cu(In,Ga)(Se,S)2 films without selenization by co-sputtering from Cu(In,Ga)Se2 quaternary and In2S3 targets,” Applied Surface Science, Vol. 257, pp. 4278-4284, 2011.
    58. K. Kushiya, M. Tachiyuki, Y. Nagoya, A. Fujimaki, B. Sang, D. Okumura, M. Satoh, O. Yamase, “Progress in large-are Cu(InGa)Se2-based thin—film modules with a Zn(O,S,OH)x buffer layer,” Solar Energy Materials & Solar Cells, Vol. 67, pp. 11-20, 2001.
    59. W. Li. Y. Sun, W. Liu, L. Zhou, “Fabrication of Cu(In,Ga)Se2 thin films solar cell by selenization process with Se vapor,” Solar Cells, Vol. 80, pp. 191-195, 2006.
    60. Y. Long, “Effects of metal electrode reflection and layer thicknesses on the performance of inverted organic solar cells,” Solar Energy Materials & Solar Cells, Vol. 94, pp. 744-749, 2010.
    61. T. Kwon, S. Kim, D. Kyung, W. Jung, S. Kim, Y. Lee, Y. Kim, K. Jang, S. Jung, M. Shin, J. Yi, “The effect of firing temperature profiles for the high efficiency of crystalline Si solar cells,” Solar Energy Materials & Solar Cells, Vol. 94, pp. 823-829, 2010.
    62. S. Mahieu, W. P. Leroy, K. Van Aeken, M. Wolter, J. Colaux, S. Lucas, G. Abadias, P. Matthys, D. Depla, “Sputter deposited transition metal nitrides as back electrode for CIGS solar cells,” Solar Energy, Vol. 85, pp. 538-544, 2011.
    63. X. Mathew, J. P. Enriquez, A. Romeo, A. N. Tiwari, “CdTe/CdS solar cells on flexible substrates,” Solar Energy, Vol. 77, pp. 831-838, 2004.
    64. R. Wurz, D. Fuertes Marron, A. Meeder, A. Rumberg, S. M. Babu, Th. Schedel-Niedrig, U. Bloeck, P. Schubert-Bischoff, M. Ch. Lux-Steiner, “Formation of an interfacial MoSe2 layer in CVD grown CuGaSe2 based thin film solar cells,” Thin Solid Films, Vol. 431-432, pp. 398-402, 2003.
    65. M. Jubault, L. Ribeaucourt, E. Chassaing, G. Renou, D. Lincot, F. Donsanti, “Optimization of molybdenum thin films for elec-trodeposited CIGS solar cells,” Vol. 95, pp. 26-31, 2011.
    66. Z. H. Li, E. S. Cho, S. J. Kwon, “Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells,” Applied Surface Science, Vol. 257, pp. 9682-9688, 2011.
    67. T. Wada, N. Kohara, S. Nishiwaki, T. Negami, “Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS2 solar cells,” Thin Solid Films, Vol. 387, pp. 118-122, 2001.
    68. E. L. Paradis and A. J. Shuskus, “RF Sputtered Epitaxial ZnO Films on Sapphire for Integrated Optics,” Thin Solid Films, Vol. 38, pp. 131-141, 1976.
    69. D. Paraguay, J. Morales, L. Estrada, E. Andrade, M. Miki-Yoshida, “Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis,” Thin Solid Films, Vol. 366, pp. 16-27, 2000.
    70. T. Minami, “New n-type transparent conducting oxides,” MRS Bul-letin, Vol. 10, p. 38, 2000.
    71. R. R. Cooper, R. Hill, “The structural , optical and electrical proper-ties of indium diselenide and their depelldence on stoichiometry,” 6th E C Photovoltaic Solar Energy Conference, pp. 768-777, 1986.
    72. T . Nakada , D. Iga , H. Ohbo and A . Kunioka, “Effects of sodium on Cu(In, Ga)Se2-based thin films and solar cells,” Jpn. J. Appl. Phy., Vol. 36, pp. 732-737, 1997.
    73. S. O. Kasap, “Optoelectronics,” prentice Hall, 1999.
    74. 吳宜學,「鉬(110)面上碳化層的成長與結構之LEED與STM研究」,國立清華大學,碩士論文,2005。
    75. R. Goswami, H. Herman, S. Sampath, X. Jiang, Y. Tian, G. Halada, “Plasma sprayed Mo-Mo oxide nanocomposites: synthesis and characterization,” Surface and Coatings Technology, Vol. 141, pp. 220-226, 2001.
    76. 黃坤祥,「製程參數及添加物對鉬之燒結行為與脆性之影響」,國立臺灣大學,博士論文,2002。
    77. J. Venables, “Nucleation and Growth of Thin films,” Rep. Prog. Physics., Vol. 47, pp. 399-459, 1984.
    78. J. A. Thronton, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings,” Journal of Vacuum Science and Technology, Vol. 11, p. 666, 1974.
    79. 王信翔,「射頻磁控濺鍍沉積GZO薄膜之研究」,龍華科技大學,碩士論文,2009。
    80. D. R. Sahu, J. L. Huang, “The property of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere,” Thin Solid Film, Vol. 516, pp. 208-211, 2007.
    81. K. T. Wan, S. Guo, D. A. Dillard, “A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress,” Thin Solid Films, Vol. 425, pp. 150–162, 2003.
    82. J. W. Christian, “The Theory of Transformation in Metals and Al-loys,” 2nd ed., Part 1, Pergamon Press, p. 418, 1975.
    83. K. Orgassa, H. W. Schock, J. H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cell,” Thin Solid Film, Vol. 431-432, pp. 387-391, 2003.
    84. J. C. Chuang, S. L. Tu, M. C. Chen, “Sputter-deposited Mo and reac-tively sputter-deposited Mo-N films as barrier layers against Cu diffusion,” Thin Solid Films, Vol. 346, pp. 299-306, 1999.
    85. V. Alberts, R. Swanepoel, M. J. Witcomb, “Material properties of CuInSe2 prepared by H2Se treatment of CuIn alloys,” Journal Material Science, Vol. 33, pp. 2919-2925, 1998.
    86. H. Schon, V, Alberts, E. Bucher, “Structural and optical characteriza-tion of polycrystalline CuInSe2,” Thin Solid Films, Vol. 301, pp. 115-121, 1997.
    87. M. Kaelin, D. Rudmann, A. N. Tiwari, “Low cost processing of CIGS thin film solar cell,” Solar Energy, Vol. 77, pp. 749-756. 2004.
    88. M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundara-prabhu, N. Muthukumarasamy, “Effect of annealing on the structural properties of electron beam deposited CIGS thin films,” Thin Solid Films, Vol. 516, pp. 6848-6852, 2008.
    89. Y. Hamakawa, “Thin-Film Solar Cells,” Springer, pp. 183-195, 2003.
    90. W. S. Chen, J. M. Stewart, W. E. Devaney, R. A. Mickelsen, B. J. Stanbery, “Thin film CuInGaSe2 cell development,” Photovoltaic Spe-cialists Conference, p. 422, 1993.
    91. H. Park, S. C. Kim, S. H. Lee, J. Koo, S. H. Lee, C. W. Jeon ,S. Yoon, W. K. Kim, “Effect of precursor structure on Cu(InGa)Se2 formation by reactive annealing,” Thin Solid Films, vol. 519, pp. 7245-7249, 2011.
    92. S. S. Wang. F. J. Shiou, C. C. Tsao, S. W. Huang, C. Y. Hsu, “An evaluation of the deposition parameters for indium sulfide (In2S3) thin films using the grey-based Taguchi method,” Materials Science in Semiconductor Processing, Vol. 16, pp. 1879-1887, 2013.
    93. L. Gong, J. Lu, Z, Ye, “Room temperature growth and optoekectronic properties of GZO/ZnO bilayer films on polycarbonate substrates by magnetron sputter,” Solar Energy Materials & Solar Cells, Vol. 94, pp. 1282-1285, 2010.
    94. S. S. Wang, F. J. Shiou, K. L. Chiou, C. C. Tsao, C. Y. Hsu, “Photocatalytic performance of TiO2 thin films deposited on soda-lime glass and the effect of post-annealing on their property,” Journal of Computational and Theoretical NANOSCIENCE.
    95. M. C. Wang, H. J. Lin, C. H. Wang, H. C. Wu, “Effects of annealing temperature on the photocatalytic activity of N-doped TiO2 thin films,” Ceramics International, Vol. 38, pp. 195-200, 2012.
    96. E. Aubry, V. Demange, A. Billard, “Effect of the internal stress re-laxation during the post-annealing on the photo-induced properties of TiO2 coating reactively sputtered,” Surface & Coatings Technology, Vol. 202, pp. 6120-6126, 2008.
    97. 林明獻,「太陽電池技術入門」,全華圖書股份有限公司,2008。
    98. K. T. Wan, S. Guo, D. A. Dillard, “A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress,” Thin Solid Films, Vol. 425, pp. 150–162, 2003.

    QR CODE