簡易檢索 / 詳目顯示

研究生: 吳先本
Hsien-Pen Wu
論文名稱: 濺鍍法製備硒化銅錫鋅薄膜太陽能電池及其分析
Preparation and analysis of sputtered Cu2ZnSnSe4 thin films solar cells
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
薛人愷
Ren-Kai Shiue
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 130
中文關鍵詞: 硒化銅錫鋅太陽能電池賤鍍法
外文關鍵詞: CZTSe, solar cell, sputtered
相關次數: 點閱:199下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於能源的危機,大家紛紛投入太陽能電池的研究與發展。目前化合物薄膜太陽能電池以銅銦鎵硒為主,但由於成本高昂,故無法普及化,因此需要新的材料來控制成本,因而發展出硫化銅錫鋅與硒化銅錫鋅兩種化合物太陽能電池,因錫、鋅的含量豐富且硒化物能隙值為0.9-1.07eV、硫化物為1.5eV,適合拿來作替換的材料。
    本次實驗利用濺鍍法製備硒化銅錫鋅薄膜,並探討不同靶材在不同基板成長溫度下對硒化銅錫鋅薄膜的特性之影響,並且透過場發射電子掃描式顯微鏡、XRD分析、能量散譜儀(EDS)、分析硒化銅錫鋅之薄膜物理性質。透過霍爾量測、光致發光(PL)分析薄膜之電性以及光學特性。利用擬太陽能光測試儀器測試其電池之轉換效率。
    經由實驗的結果顯示,濺鍍系統中於基板溫度400℃下所沉積的薄膜性質較佳,其薄膜為多晶結構,晶粒大小為幾百奈米,薄膜皆為P型半導體,能隙為直接能隙,其能隙值約在0.9-1.08eV,吸收係數(α)在退火前後均維持在104~105cm-1、載子濃度為1020-1021cm-3,薄膜皆具有低的電阻率10-3ohm-cm,載子遷移率最高為10cm2V-1s-1。利用其最佳參數製備電池,最後測試其太陽能電池轉換效率之結果尚待改善。


    Due to energy crisis, the research of solar cells is recently much more attractive. The main compound thin film solar cell is the Cu(In,Ga)Se2 system, but the high cost has limited its further applications. Lowing the cost with the finding of new materials is necessary, therefore Cu2ZnSnS4(CZTS) and Cu2ZnSnSe4 (CZTSe) solar cells with energy band gaps of 1.5 eV and 0.9-1.07eV, respectively, are developed.
    In this study, the effects of the target composition and substrate temperature on the performance of sputtered Cu2ZnSnSe4 thin film were evaluated. The physical characteristics of the Cu2ZnSnSe4 thin film were investigated by X-Ray Diffraction(XRD), Field Emission-Scanning Electron Microscope(FE-SEM), and Energy Dispersive Spectrometer(EDS) . Hall measurement and Photoluminescence were used for the electrical and optical properties, respectively.
    The experimental results shows that the sputtered Cu2ZnSnSe4 thin films deposited at 400℃ have better performance. At this condition, the films are p-type, well crystallized with a large grain size of several hundred nm, and a direct energy gap of 0.9-1.08 eV and have an absorption coefficient of 104-105 cm-1 before and after annealing, a carrier concentration of 1020-1021cm-3, and the highest carrier mobility of 10 cm2V-1s-1. Finally, CZTSe solar cell devices were built and its efficiency was measured. Due to the complicated steps for preparation, the performance of CZTSe solar cell devices needs to be improved.

    摘要 I Abstract II 圖表目錄 VII 第一章 序論 1 1-1 前言 1 1-2 太陽能電池基本構造與發展 2 1-2-1 基本構造 2 1-2-2 基本名詞定義 2 1-3發展 3 1-3-1 非晶矽薄膜太陽能電池 (Amorphous Silicon Solar Cell) 3 1-3-2 碲化鎘薄膜太陽能電池 (Cadmium Telluride Thin Film Solar Cell) 4 1-3-3 硒化銅銦鎵太陽能電池 (Copper Indium Gallium Diselenide Solar Cell) 5 1-4 研究動機與目的 6 第二章 基礎理論與文獻回顧 10 2-1 理論基礎 太陽能電池工作原理[] 10 2-2 化合物太陽能電池各層之介紹與功能 15 2-2-1 鈉玻璃基板 (Soda-lime glass) 15 2-2-2 鉬金屬背部電極 (Mo back contact) 16 2-2-3主吸收層 (Absorber layer) 17 2-2-4 緩衝層(Buffer layer) 36 2-2-5 窗口層(Window layer) 36 2-2-6 上電極 36 第三章 實驗步驟 37 3-1 實驗設備說明 37 3-1-1 DC直流濺鍍系統 37 3-1-2 RF射頻濺鍍系統 38 3-1-3 高溫管型爐 39 3-1-4 化學浴相關儀器設備 39 3-2 實驗藥品與氣體選擇 40 3-2-1 藥品 40 3-2-2 氣體 41 3-3 實驗流程 42 3-3-1 基板清洗 42 3-3-2 吸收層靶材粉末製備 42 3-3-3 吸收層靶材製備 44 3-3-4 緩衝層 44 3-3-5 本質層 45 3-3-6 透明導電層 45 3-3-7 上電極 45 3-5 實驗參數 46 3-6 分析儀器 49 3-6-1 X光繞射分析儀 (X-ray Diffractometer,XRD) 49 3-6-2場發射掃描式電子顯微鏡 (Field Emission-Scanning Electron Microscope,FE-SEM) 49 3-6-3 霍爾量測 (Hall Effect Measurement System) 50 3-6-4 吸收光譜 (Absorption Spectroscopy) 50 3-6-5 紫外線-可見光光譜儀(UV-Visible Spectroscopy) 50 3-6-6 擬太陽能光測試儀 (Standard AM1.5 illumination meter) 50 第四章 結果與討論 60 4-1 Cu2ZnSnSe4 薄膜物理性質分析 60 4-1-1 FE-SEM 表面形貌觀察 60 4-1-2 EDS成分分析 62 4-2 XRD結構性質分析 62 4-3 未退火前薄膜分析結果討論 65 4-4退火熱處理 66 4-4-1 FE-SEM表面形貌觀察 67 4-5電性量測(Hall measurement) 68 4-5-1 未退火前 68 4-5-2 退火後 69 4-6 吸收光譜 70 4-7 鉬 (背部金屬) 72 4-8 硫化鎘 (緩衝層) 72 4-9 氧化銦錫 (透明導電層) 73 4-10 電池的製備與分析 74 第五章 結論 111 第六章 參考文獻 113

    [1] 京都議定書
    [2] Lidgate, D., Green energy? Engineering science and education journal, pp.221-227(1992).
    [3] Adams, W.G. and R.E., Day. Proc. R. Soc., A25: pp.113(1877).
    [4] Richard H. Bube, Photovoltaic Materials. pp.8-11.
    [5] Yang, J., Banerjee, A., Guha, S.,“Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13% stable conversion efficiencies,” Applied Physics Letters, Vol. 70, pp. 2975-2977(1977).
    [6] Banerjee, A., Yang, J., Glatfelter, T., Hoffman, K., Guha, S., “Experimental study of p layers in “tunnel” junctions for high efficiency amorphous silicon alloy multi junction solar cells and modules,” Applied Physics Letters, Vol.64, pp.1517-1519(1994).
    [7] X. Wu, R.G. Dhere, D.S. Albin, T.A. Gessert, C.Dehart, J.C. Keane, A. Duda, T.J. Coutts, S. Asher, D. H. Levi, H.R. Moutinho, Y. Yan, T. Moriarty, S. Johnston, K. Emercy, and P. Sheldon “High-Efficiency CTO/ZTO/CdS/CdTe Polycrystalline Thin-Film Solar Cells” National Renewable Energy Laboratory pp.14-17 (2001).
    [8] C.Y. Shi, Yun Sun, Qing He, F.Y. Li, J.C. Zhao.“Cu(In,Ga)Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers” Solar Energy Materials & Solar Cells 93 pp.654-656(2009).
    [9] Shogo Ishizuka, Akimasa Yamada, Koji Matsubara, Paul Fons, Keiichiro Sakurai, and Shieru Niki “Alkali incorporation control in Cu(In, Ga)Se¬¬2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency” Applied Physics Letters 93 (2008).
    [10] Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi. “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor” Prog. Photovolt: Res. Appl. 16:pp.235-239(2008).
    [11] Babu, G. S., Kumar, Y. B. K., Bhaskar, P.U., Raja, V. S., “Growth and characterization of co-evaporated Cu¬2ZnSnSe4 thin films for photovoltaic applications” Journal of Physics D: Applied Physics, Vol.41, 205305(2008).
    [12] G. Zoppi, I. Forbes, R.W Miles, P.J. Dale, J.J. Scragg and L. M. Peter“Cu¬2ZnSnSe4 Thin Film Solar Cells Produced by Selenisation of Magnetron Sputtered Precursors” Prog. Photovolt: Res. Appl.:17:pp.315-319(2009).
    [13] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, “Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique” , Appl. Phys. Express 1 041201-1–141201-2(2008).
    [14] 蔡進.,“超高效率太陽能電池-從愛因斯坦的光電效應談起,”,
    物理雙月刊 27,701(2005).
    [15] U. Rau, H.W. Schock “Electronic properties of Cu(In,Ga)Se2
    hetero junction solar cells-recent achievements, current
    understanding and future challenges” Appl.phys. A 69, pp.131-147
    (1999).
    [16] Yan, J. H., Kim, M.S., “Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate,” Thin Solid Films, Vol.515, pp. 5876-5879 (2007).
    [17] R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T.Unold, A. Eicke, R. Klenk, H.W. Schock. “ The influence of Na on low temperature growth of CIGS thin film solar cells on polymide substrate” Thin Solid Films 517 pp.2187-2190(2009).
    [18] Yukiko Kamikawa-Shimizu, Shuuhei Shimada, Manabu Watanabe, Akimasa Yamada, Keiichiro Sakurai, Shogo lshizuka, Hironori Komaki, Koji Matsubara, Hajime Shibata, Hitoshi Tampo, Keigou Maejima, and Shigeru Niki. “Effect of Mo back contact thickness on the properties of CIGS solar cells” Phys. Status Solidi A 206, No.5, pp.1063-1066(2009).
    [19] L. Singh, M. Saxena, P.K. Bhatnagar, Indian . J. Pure Appl. Phys. 42 841(2004).
    [20] Satoru Seike, Keisuke Shiosaki , Masamichi Kuramoto , Hironori Komaki , Koji Matsubara , Hajime Shibata , Shogo Ishizuka , Akimasa Yamada , Shigeru Niki.“Development of high-efficiency CIGS integrated submodules using in-line deposition technology” Solar Energy Materials & Solar Cells(2010).
    [21] Min Sik Kim, R. B. V. Chalapathy, Kyung Hoon Yoon, and Byung Tae Ahn“Grain Growth Enhancement and Ga Distribution of Cu(In0.7Ga0.3)Se2 Film Using Cu2Se Layer on Cu-In-Ga Metal Precursor” Journal of The Electrochemical Society, 157 (1) pp.B154-B158 (2010).
    [22] Shogo Ishizuka, Akimasa Yamada , Hajime Shibata , Paul Fons , Keiichiro Sakurai“Large grain Cu(In,Ga)Se2 thin film growth using a Se-radical beam source” Solar Energy Materials & Solar Cells 93 pp.792-796(2009).
    [23] M.E. Calixto , P.J. Sebastian , R.N. Bhattacharya , Rommel Noufi“Compositional and optoelectronic properties of CIS and CIGS thin films formd by electro deposition ” Solar Energy Materials & Solar Cells 59 pp.75-84(1999).

    [24] G.S Chen, J.C. Yang, Y.C. Chan, L.C. Yang, Welson Huang, “Another route to fabricate single-phase chalcogenides by post-selenization of Cu-In-Ga precursors sputter deposited from a single ternary target,” Solar Energy Materials & Solar Cells 93 pp.1351-1355 (2009).
    [25] P.J. Sebastian, M.E. Calixto, R.N. Bhattacharya, Rommel Noufi,“CIS and CIGS based photovoltaic structures developed from electrodeposited precursors,” Solar Energy Materials & Solar Cells 59 pp.125-135(1999).
    [26] Hironori Katagiri, Kazuo Jimbo, Win Shwe Maw, Koichiro Oishi, Makoto Yamazaki, Hideaki Araki, Akiko Takeuchi,“Development of CZTS-based thin film solar cells,” Thin Solid Films 517 pp.2455-2460(2009).
    [27] K. Ito, T. Nakazawa, Jpn. J. Appl. Phys. 27 pp.2094-2097(1988).
    [28] Shiyou Chen, X.G. Gong, Aron Walsh, and Su-Huai Wei,“Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4,” Applied Physics Letters 96, 021902 (2010).
    [29] Min Yen Yeh, Chin Cheng Lee, Dong Sing Wuu.“Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol-gel spin-coated deposition” J Sol-Fel Sci Technol (2009.)
    [30] Qijie Guo, Hugh W. Hillhouse, and Rakesh Agrawal.“Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for solar Cells” JACS COMMUNICATIONS (2009).
    [31] Shannon C. Riha, Bruce A. Parkinson, and Amy L. Prieto “Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals” JACS COMMUNICATIONS (2009).
    [32] Kazuo Jimbo, Ryoichi Kimura, Tsuyoshi Kamimura, Satoru Yamada, Win Shwe Maw, Hideaki Araki, Koichiro Oishi, Hironori Katagiri,“Cu2ZnSnS4-type thin film solar cells using abundant materials,” Thin Solid Films 515 pp.5997-5999 (2007).
    [33] C.P Chan, H. Lam, C. Surya,“Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids,” Solar Energy Materials & solar Cells 94 pp.207-211(2010).
    [34] Hideaki Araki, Yuki Kubo , Aya Mikaduki , Kazuo Jimbo , Win Shwe Maw , Hironori Katagiri , Makoto Yamazaki , Koichiro Oishi , Akiko Takeuchi.“Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors” Solar Energy Materials & Solar Cells 93 pp.996-999(2009).
    [35] Kunihiko Tanaka,Masatoshi Oonuki, Noriko Moritake, Hisao Uchiki.“Cu¬2ZnSnS4 thin film solar cells prepared by non-vacuum processing” Solar Energy Materials & Solar Cells 93 pp.583-587(2009).
    [36] Kunihiko Tanaka , Noriko Moritake, Hisao Uchiki.“Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors.” Solar Energy Materials & Solar Cells 91 pp. 1199-1201(2007).
    [37] Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja “Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films” Solar Energy Materials & Solar Cells 93 pp.1230-1237 (2009).
    [38] Satoshi Nakamura, Tsuyoshi Maeda, and Takahiro Wada “Electronic structure of stannite-type Cu2ZnSnSe4 by first principles calculations” Phys. Status Solidi C 6, No. 5, pp.1261-1265(2009).
    [39] J. Krustok, R. Josepson, T. Raadik, M. Danilson“Potential fluctuations in Cu2ZnSnSe4 solar cells studied by temperature dependence of quantum efficiency curves” Physica B.
    [40]Clas Persson “Electronic and optical properties of Cu2ZnSnS4 and Cu¬2¬ZnSnSe4”JOURNAL OF APPLIED PHYSICS 107, 053710 (2010).
    [41] Alexey Shavel, Jordi Arbiol, and Andreu Cabot“Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+x+2y” JACS COMMUNCATIONS (2010).
    [42] G Suresh Babu, Y B Kishore Kumar, P Uday Bhaskar and V Sundara Raja“Effect of post-deposition annealing on the growth of Cu2ZnSnSe4 thin films for a solar cell absorber layer” Semicond. Sci. Technol. 23 (2008).
    [43] J. Krustok, R. Josepson, T. Raadik, M. Danilson“Potential fluctuations in Cu2ZnSnSe4 solar cells studied by temperature dependence of quantum efficiency curves” Physica B.
    [44] Hao Wei, Wei Guo , Yijing Sun, Zhi Yang , Yafei Zhang“Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals” Materials Letters 64 pp.1423-1426 (2010).
    [45] Rachmat Adhi Wibowo, Woo Seok Kim, Eun Soo Lee, Badrul Munir, Kyoo Ho Kim “Single step preparation of quaternary Cu2ZnSnSe¬¬4 thin films by RF magnetron sputtering from binary chalcogenide targets” Journal of Physics and Chemistry of Solids 68 pp.1908-1913 (2007).
    [46] Suresh Babu G., Kishore Kumar Y.B., Uday Bhaskar P., Sundara Raja Vanjari “Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films” Solar Energy Materials & Solar Cells(2009).
    [47] O. Volobujeva, J. Raudoja, E. Melikov, M. Grossberg, S. Bereznev, R. Traksmaa“Cu2ZnSnSe4 films by selenization of Sn-Zn-Cu sequential films” Journal of Physics and Chemistry of Solids 70 pp.567-570 (2009).
    [48] Rachmat Adhi Wibowo, Eun Lee, Badrul Munir, and Kyoo HO Kim*“Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films” Phys. Stat. sol. pp.3373-3379(2007).
    [49] Zhou Limeo, Xue Yuzhi, LI Jianfeng“Study on ZnS thin films prepared by chemical bath deposition” Journal of Environmental Sciences Supplement pp.76-79(2009).
    [50] H. Komaki, A. Yamada, K. Sakurai, S. Ishizuka, Y. Kamikawa-Shimizu, K. Matsubara, H. Shibata, and S. Niki“CIGS solar cell with CdS buffer layer deposited by ammonia-free process” Phys. Status Solidi A 206, No.5, pp.1072-1075(2009).
    [51] Y. Lare, A. Godoy, L. Cattin, K. Jondo, T. Abachi, F.R. Diaz, M. Morsli, K. Napo, M.A. del Valle, J.C. Bernde“ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells”Applied Surface Science 25 pp.6615-6619 (2009).

    [52] 黃瑋迪,“濺鍍法製備硒化銅錫薄膜與其特性分析,”國立台灣科技大學 材料科技研究所,碩士學位論文,(2009).
    [53] 張振昌,“化學水浴沉積法成長硫化鎘薄膜之研究”國立中山大學材料科學研究所,碩士學位論文,(2006).

    QR CODE