簡易檢索 / 詳目顯示

研究生: 李群文
CHUN-WEN Li
論文名稱: 以排氣背壓閥實現汽油均質進氣壓燃增程發電引擎之閉迴路燃燒時間點控制
Using Exhaust Throttle to Implement Closed-loop Control of Combustion Timing in a Gasoline HCCI Range Extending Engine
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 呂百修
none
陳亮光
Liang-Kuang Chen
盧昭暉
none
吳浴沂
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 221
中文關鍵詞: 汽油均質進氣壓燃引擎燃燒熱釋放燃燒時間點排氣背壓閥比例-積分控制
外文關鍵詞: HCCI, Heat Release, Combustion Timing, Exhaust Throttle, PI controller
相關次數: 點閱:298下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

均質進氣壓燃引擎有著高效率及低NOx排放之優點,但均質進氣壓燃引擎點火時間受到油氣混合物濃度、
汽缸內部溫度及壓力影響,不像一般汽油引擎及柴油引擎,其點火時間可透過火星塞跳火時間及噴油時間來決定,因此控制均質進氣壓燃引擎之自燃時間點控制便成為主要的挑戰。本研究採用華擎機械工業股份有限公司所開發之500c.c單缸引擎,更換活塞增高壓縮比並加裝進氣加熱系統以利均質進氣壓燃燃燒模式之進行。燃燒時間點之控制則藉由排氣背壓閥(Exhaust Throttle)達成殘留氣體比例之調變。
本研究首先進行一系列的穩態實驗以決定適當之均質進氣壓燃模式之操作點。透過XPC的燃燒熱釋放模型進行即時運算,算出引擎燃燒50%之時間點(CA50)並回授至Mototron ECU進行閉迴路燃燒時間點控制。閉迴路控制系統乃以比例-積分控制為基礎。最後,我們以噴油量步階變化作為干擾,以檢驗此閉迴路控制系統抑制干擾之性能。


Homogeneous Charge Compression Ignition (HCCI) engines have received significant attention in recent years due to their high efficiencies and extremely low NOx emissions.However, unlike the conventional engines, the combustion timing of HCCI engines depends on the cylinder mixture conditions such as temperature, pressure and compositions.Therefore, regulation of combustion timing becomes a critical challenge for the success of HCCI engines.In this study, a single-cylinder 500c.c.engine developed by China Engine Corporation (CEC) is modified by replacing the piston for a higher compression ratio and adding an intake heating system to facilitate the HCCI combustion.An exhaust throttle is also implemented to control the HCCI combustion timing via regulation of the residual gas fraction inside the cylinder.A series of steady-state experiments are conducted to select proper HCCI operating condition.The combustion timing when 50%$ of the fuel is burned (CA50) is estimated real time in the Matlab XPC-target environment.The estimated CA50 timing is then fed back to the Mototron ECU for closed-loop combustion timing control.The closed-loop control system is developed based on the proportional-integral feedback structure.Finally, the closed-loop performance is examined by applying a fuel step change as a disturbance to the combustion timing control system.

1 緒論 1 1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 論文貢獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 實驗設備介紹 11 2.1 實驗設備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 實驗平台 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 實驗引擎 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 車輛 ECU 快速開發套件 -MotoTron 系統 . . . . . . . . . . . . . . . . 17 2.4.1 Mototron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 MotoHawk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.3 MotoTune . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 點火訊號放大電路系統 . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 xPC-Target 即時量測分析系統 . . . . . . . . . . . . . . . . . . . . . . 22 2.6.1 xPC-Target . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6.2 xPC 軟體需求 . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6.3 xPC-Target 硬體需求 . . . . . . . . . . . . . . . . . . . . . . 24 2.6.4 xPC CPU Overload . . . . . . . . . . . . . . . . . . . . . . . 24 2.6.5 xPC 檔案儲存 . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6.6 數據擷取系統 (Data Acquisition System) . . . . . . . . . . . . 25 2.7 進氣加熱裝置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.8 火星塞式汽缸壓力計 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.9 汽缸壓力計電荷放大器 . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.10 進排氣溫度計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.11 進排氣壓力計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.12 進氣流量計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.13 引擎動力計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.14 曲軸角度編碼器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.15 節氣門拉線馬達 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.16 空燃比計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.17 廢氣分析儀 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.18 燃油流量計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.19 廢氣再循環閥門 (Exhaust Gas Recircuation,EGR) . . . . . . . . . . 55 2.20 排氣背壓閥 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3 實驗方法 57 3.1 實驗架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 燃油選擇 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 燃燒分析系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.1 汽缸體積模型 . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.2 燃燒熱釋放模型 . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.3 平均有效壓力計算 . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4 SI 模式操作條件及 Engine Map . . . . . . . . . . . . . . . . . . . . . 65 3.5 進氣加熱設定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6 SI 模式切換至 HCCI 模式控制策略 . . . . . . . . . . . . . . . . . . . 67 3.7 Matlab 內建系統鑑別程式 . . . . . . . . . . . . . . . . . . . . . . . . 70 3.8 MotoHawk 以排氣背壓閥控制燃燒時間點之控制策略 . . . . . . . . . . 72 4 引擎穩態實驗數據與討論 73 4.1 SI 模式變排氣背壓閥 , 實驗數據 . . . . . . . . . . . . . . . . . . . . . 75 4.1.1 SI 模式變排氣背壓閥 , 汽缸壓力 . . . . . . . . . . . . . . . . . 76 4.1.2 SI 模式變排氣背壓閥 , 進排氣溫度、 壓力、 流量 . . . . . . . . . 79 4.1.3 SI 模式變排氣背壓閥 , 比熱比 γ 估算 . . . . . . . . . . . . . . . 84 4.1.4 SI 模式變排氣背壓閥 , 燃燒分析 . . . . . . . . . . . . . . . . . 86 4.1.5 SI 模式變排氣背壓閥 , 燃燒時間點比較 . . . . . . . . . . . . . . 88 4.1.6 SI 模式變排氣背壓各項性能分析 . . . . . . . . . . . . . . . . . 92 4.2 SI 模式變 EGR 閥 , 實驗數據 . . . . . . . . . . . . . . . . . . . . . . . 93 4.2.1 SI 模式變 EGR 壓閥 , 汽缸壓力 . . . . . . . . . . . . . . . . . 94 4.2.2 SI 模式變 EGR 閥 , 進排氣溫度、 壓力、 流量 . . . . . . . . . . . 96 4.2.3 SI 模式變 EGR, 燃燒分析 . . . . . . . . . . . . . . . . . . . . 101 4.2.4 SI 模式變 EGR 閥 , 燃燒時間點比較 . . . . . . . . . . . . . . . 103 4.2.5 SI 模式變 EGR 各項性能分析 . . . . . . . . . . . . . . . . . . 106 4.3 HCCI 模式 , 變噴油量以降低進氣溫度實驗數據 . . . . . . . . . . . . . 107 4.3.1 HCCI 模式 , 變噴油量汽缸壓力數據 . . . . . . . . . . . . . . . 108 4.3.2 HCCI 模式變噴油量 , 進排氣溫度、 進排氣壓力及進氣流量數據 . 110 4.3.3 HCCI 模式變噴油量 , 比熱比 γ 估算 . . . . . . . . . . . . . . . . 114 4.3.4 HCCI 模式變噴油量 , 燃燒分析 . . . . . . . . . . . . . . . . . . 115 4.3.5 HCCI 模式變噴油量 , 各項性能分析 . . . . . . . . . . . . . . . 121 4.4 HCCI 模式變進氣溫度 , 實驗數據 . . . . . . . . . . . . . . . . . . . . 122 4.4.1 HCCI 模式變進氣溫度 , 汽缸壓力數據 . . . . . . . . . . . . . . 123 4.4.2 HCCI 模式變進氣溫度 , 進排氣壓力及進氣流量數據 . . . . . . . 125 4.4.3 HCCI 模式變進氣溫度 , 燃燒分析 . . . . . . . . . . . . . . . . 129 4.4.4 HCCI 模式變進氣溫度 , 各項性能分析 . . . . . . . . . . . . . . 136 4.5 HCCI 模式變 EGR 閥 , 實驗數據 . . . . . . . . . . . . . . . . . . . . 137 4.5.1 HCCI 模式變 EGR 閥 , 汽缸壓力數據 . . . . . . . . . . . . . . 139 4.5.2 HCCI 模式變 EGR 閥 , 進排氣壓力及進氣流量數據 . . . . . . . 141 4.5.3 HCCI 模式變 EGR 閥 , 燃燒分析 . . . . . . . . . . . . . . . . 145 4.5.4 HCCI 模式變 EGR 閥 , 各項性能分析 . . . . . . . . . . . . . . 150 4.6 HCCI 模式變排氣背壓閥 , 實驗數據 . . . . . . . . . . . . . . . . . . . 151 4.6.1 HCCI 模式變排氣背壓閥 , 汽缸壓力數據 . . . . . . . . . . . . . 151 4.6.2 HCCI 模式變排氣背壓閥 , 進排氣壓力及進氣流量數據 . . . . . . 154 4.6.3 HCCI 模式變排氣背壓閥 , 燃燒分析 . . . . . . . . . . . . . . . 158 4.6.4 HCCI 模式變排氣背壓閥 , 各項性能分析 . . . . . . . . . . . . . 163 5 引擎暫態實驗數據與討論 171 5.1 HCCI 模式 , 變噴油量暫態操作點設定 . . . . . . . . . . . . . . . . . . 172 5.1.1 HCCI 模式 , 變噴油量暫態實驗數據 . . . . . . . . . . . . . . . 173 5.2 HCCI 模式 , 變 EGR 閥暫態操作點設定 . . . . . . . . . . . . . . . . . 176 5.2.1 HCCI 模式 , 變 EGR 閥暫態實驗數據 . . . . . . . . . . . . . . 177 5.3 HCCI 模式 , 變排氣背壓閥暫態操作點設定 . . . . . . . . . . . . . . . . 182 5.3.1 HCCI 模式 , 變排氣背壓閥暫態實驗數據 . . . . . . . . . . . . . . . . . . 183 5.3.2 HCCI 模式 , 系統鑑別 . . . . . . . . . . . . . . . . . . . . . . . . .187 5.3.3 HCCI 模式 ,PI 實際控制 . . . . . . . . . . . . . . . . . . . . . . . .195 6 結論與未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

[1] 林育志 , 「均質進氣壓燃式引擎自燃特性研究」 , 國立台北科技大學車輛工程系 , 碩士論文 , 台北(2008).
[2] 林承佑 , 引擎燃燒熱釋放率之即時估測研究 , 國立台灣科技大學機械工程系 , 碩士論文 , 台北 (2010).
[3] J. B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill,New York(1988).
[4] H. C. Watson, P. Mehrani, and M. J. Brear, “The always lean burn spark ignition (ALSI)
engine its performance and emissions,” SAE Paper 2009-01-0932.
[5] C. W. Wu, R. H. Chen, J. Y. Pu, and T. H. Lin, “The influence of air fuel ratio on engine
performance and pollutant emission of an si engine using ethanol gasoline blended fuels,”Atmospheric Environment, vol. 38, 2004.
[6] R. H. STANGLMAIER and C. E. ROBERTS, “Homogeneous charge compression ignition (hcci): benefits, compromises, and future engine applications,” SAE Paper 1999-01-3682.
[7] R. H. Thring, “Homogeneous-charge compression-ignition (hcci) engines,” SAE Paper 892068.
[8] D. S. Stanglmaier and E. Roberts., “Homogeneous charge compression ignition (hcci): Benefits, compromises, and future engine application.” SAE paper 1999-01-3682.
[9] P. Najt and D. Foster., “Compression-ignited homogeneous charge combustion.” SAE paper 830264, 1983.
[10] R. H. Thring., “Homogeneous-charge compression-ignition (hcci) engines.” SAE paper 892068, 1989.
[11] M. Christensen, B. Johansson, P. Amneus, and F. Mauss, “Supercharged homogeneous charge compression ignition,” SAE Paper 980787.
[12] F. M. M. C. B. J. P. Amneus, D. Nilson, “Homogeneous charge compression ignition engine:experiments and detailed kinetic calculations,” COMODIA.
[13] M. F. Brunt, Rai, and A. L. Emtage, “The calculation of heat release energy from engine cylinder pressure data,” SAE Paper 981052.
[14] M. Iida, T. Aroonsrisopon, M. Hayashi, and D. F. J. Martin, “The effect of intake air temperature, compression ratio and coolant temperature on the start of heat release in an hcci (homogeneous charge compression ignition) engine,” SAE Paper 2001-01-1880.
[15] X.-C. Lu, W. Chen, and Z. Huang, “Afundamentalstudy on the control of the hcci combustion and emissions by fuel design concept combined with controllable egr. part 2. effect of operating conditions and egr on hccicombustion,” Fuel, vol. 84, p. 1084 1092, June 2005.
[16] M. Y. Au, J. W. Girard, R. Dibble, D. Flowers, S. M. Aceves, J. Martinez-Frias, R. Smith,C. Seibel, and U. Maas, “1.9-liter four-cylinder hcci engine operation with exhaust gas recirculati,” SAE Paper 2001-01-1880.
[17] C. J. Chiang and A. G. Stefanopoulou, “Steady-state multiplicity and stability of thermal equilibria in homogeneous charge compression ignition (hcci) engines,” 43rd IEEE Conference on Decision and Control.
[18] Mathworks, xPC Target 4 User’s Guide. The MathWorks Inc.
[19] T. Bancha and L. Jau-Huai, Examination of HCCI (Homogeneous Charge Compression Ignition) Mode on Low Compression Ratio Engine. 中國機械工程學會第二十五屆全國學術研討會論文集 .

QR CODE