簡易檢索 / 詳目顯示

研究生: 陳威愷
Wei-Kai Chen
論文名稱: 三相永磁同步電動機PI控制器參數最佳化
Parameter Optimization of PI Controller for Three-Phase Permanent Magnet Synchronous Motors
指導教授: 劉益華
Yi-Hua Liu
蕭鈞毓
Chun-Yu Hsiao
口試委員: 羅一峰
Yi-Feng Luo
鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
劉益華
Yi-Hua Liu
蕭鈞毓
Chun-Yu Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 101
中文關鍵詞: 比例積分微分控制器最佳化粒子群演算法基因演算法向量控制三相永磁同步電動機
外文關鍵詞: proportional integral differential controller, optimization, particle swarm algorithm, genetic algorithm, vector control, PMSM
相關次數: 點閱:224下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 比例積分微分控制器於各領域被廣泛的使用,根據誤差進行比例、積分及微分的調整可提升控制系統的穩定性與可靠性。現今已有許多學者發展出不同的PID參數調整方法使調參容易、系統效率提升,但如何更有效的調整參數仍有待研究。
    本文提出使用粒子群演算法及基因演算法來最佳化比例積分控制參數,主要目的為使用粒子群演算法及基因演算法搜索三相永磁同步電動機向量控制之轉速及電流迴路PI控制參數。本文使用MATLAB實現粒子群演算法及基因演算法並使用Simulink模擬軟體建立三相永磁同步電動機向量控制平台,透過演算法可得到使目標函數最小化之PI參數組合。本文將粒子群演算法及基因演算法與其他參數調整法之模擬結果進行比較,結果顯示粒子群最佳化參數法相較於工程設計法、PID Tuner設計法、齊格勒調整法及基因最佳化參數法,所得之最佳化PI參數於平方誤差積分可以分別改善96%、69%、99%及12%。


    The Proportional-Integral-Derivative (PID) controller is widely used in various fields, and adjusting the proportional, integral, and derivative terms based on the error can improve the stability and reliability of control systems. Many scholars have developed different PID parameter tuning methods to make parameter adjustment easier and improve system efficiency. However, there is still a need for research on more effective parameter tuning methods.
    This thesis proposes the use of particle swarm optimization (PSO) and genetic algorithm (GA) to optimize the PID control parameters. The main objective is to use PSO and GA to search for the optimal proportional and integral (PI) control parameters for speed and current loops in the vector control of a three-phase permanent magnet synchronous motor (PMSM). MATLAB is used to implement the PSO and GA algorithms, and Simulink simulation software is used to build a platform for vector control of a three-phase PMSM. Through the algorithms, the PI parameter combination that minimizes the objective function can be obtained.
    The simulation results of the PSO and GA algorithms are compared with other parameter tuning methods. The results show that the PSO-based optimization method improves the Integral of Squared Error (ISE) by 96% compared to the engineering design method, 69% compared to the PID Tuner design method, 99% compared to the Ziegler-Nichols tuning method, and 12% compared to the GA method.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目標 2 1.3 文獻探討 2 1.4 論文大綱 4 第二章 三相永磁同步電動機 6 2.1 前言 6 2.2 三相永磁同步電動機之結構與特性[18] 6 2.3 座標軸轉換[19] 10 2.3.1 Clarke轉換 10 2.3.2 Park轉換 12 2.4 三相永磁同步電動機之數學模型[19] 14 2.5 空間向量脈衝寬度調變 19 第三章 比例積分控制器與設計方法 27 3.1 比例積分控制器介紹 27 3.2 各類PI參數調整方法 28 3.2.1 工程設計法[1, 2] 28 3.2.2 PID Tuner設計法[3] 34 3.2.3 Zeigler-Nichols調整法[4] 36 第四章 應用於PI參數最佳化設計之演算法 40 4.1 粒子群演算法 40 4.1.1 粒子群演算法簡介[20] 40 4.1.2 粒子群演算法流程[20] 41 4.2 基因演算法 43 4.2.1 基因演算法簡介[21] 43 4.2.2 基因演算法流程[21] 44 4.3 三相永磁同步電動機結合最佳化演算法進行PI參數最佳化 46 4.3.1 三相永磁同步電動機控制系統 46 4.3.2 最佳化問題說明 47 4.3.3 使用粒子群演算法與基因演算法求問題解 48 第五章 模擬結果與分析 53 5.1 三相永磁同步電動機向量控制模擬 53 5.2 各類PID參數調整方法與應用於PI參數最佳化設計之演算法 55 第六章 結論與未來展望 71 6.1 結論 71 6.2 未來展望 72 參考文獻 73 附錄 76

    [1] 「永磁同步電機(PMSM)磁場定向控制(FOC)電流環PI調節器參數整定」,取自: https://blog.csdn.net/weixin_42650162 /article/details/128365234?spm=1001.2014.3001.5502
    [2] 「永磁同步電機(PMSM)磁場定向控制(FOC)轉速環PI調節器參數整定」,取自: https://blog.csdn.net/weixin_42650162 /article/details/128368942?spm=1001.2014.3001.5502
    [3] Mathwork, “MATLAB Control System Toolbox,” Application notet, 2020.
    [4] P. M. Meshram and Rohit G. Kanojiya, “Tuning of PID Controller using Ziegler-Nichols Method for Speed Control of DC Motor”, IEEE International Conference On Advances In Engineering, Science And Management (ICAESM -2012), 2012, pp. 117-122.
    [5] C.A.Javier, U.E.Carrero, E.C.Camacho and Juan M.Calderón, “Optimal PID ø axis Control for UAV Quadrotor based on Multi-Objective PSO.” IFAC-PapersOnLine, vol. 55, no. 14, 2022, pp. 101-06.
    [6] R. Mahadeva, M. Kumar, S. P. Patole and G. Manik, “PID Control Design Using AGPSO Technique and Its Application in TITO Reverse Osmosis Desalination Plant,"”in IEEE Access, vol. 10, pp. 125881-125892, 2022.
    [7] Liu Fenghua, Wenli Liu and Hanbin Luo, “Operational stability control of a buried pipeline maintenance robot using an improved PSO-PID controller.” Tunnelling and Underground Space Technology, vol. 138, Aug. 2023.
    [8] Fang, Hongqing, Long Chen and Zuyi Shen, “Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor.” Energy Conversion and Management, vol. 52, no. 4, 2011, pp. 1763-70.
    [9] Hao Feng, Wei Ma, Chenbo Yin and Donghui Cao, “Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller.” Automation in Construction, vol. 127, 2021.
    [10] M. J. Neath, A. K. Swain, U. K. Madawala and D. J. Thrimawithana, “An Optimal PID Controller for a Bidirectional Inductive Power Transfer System Using Multiobjective Genetic Algorithm,” in IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1523-1531, March 2014.
    [11] Zwe-Lee Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system,” in IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 384-391, June 2004.
    [12]
    L. Jia and X. Zhao, “An Improved Particle Swarm Optimization (PSO) Optimized Integral Separation PID and its Application on Central Position Control System,” in IEEE Sensors Journal, vol. 19, no. 16, pp. 7064-7071, 15 Aug.15, 2019.
    [13] E. D. P. Puchta, H. V. Siqueira and M. d. S. Kaster, “Optimization Tools Based on Metaheuristics for Performance Enhancement in a Gaussian Adaptive PID Controller,” in IEEE Transactions on Cybernetics, vol. 50, no. 3, pp. 1185-1194, March 2020.
    [14] W. Assawinchaichote, C. Angeli and J. Pongfai, “Proportional-Integral-Derivative Parametric Autotuning by Novel Stable Particle Swarm Optimization (NSPSO),” in IEEE Access, vol. 10, pp. 40818-40828, 2022.
    [15] M.I.Muhammad, Ling Wang, Minrui Fei, et al. “Comparative performance analysis of various binary coded PSO algorithms in multivariable PID controller design.” Expert Systems with Applications, vol. 39, no. 4, 2012, pp. 4390-401.

    [16] Y. Xiao, S. Yin, Y. Zhao, Y. Chen and F. Wan, “Research on the Control Strategy of Battery Roller Press Deflection Device by Introducing Genetic Algorithm to Optimize Integral Separation PID,” in IEEE Access, vol. 10, pp. 100878-100894, 2022.
    [17] H. M. Hasanien, “Design Optimization of PID Controller in Automatic Voltage Regulator System Using Taguchi Combined Genetic Algorithm Method,” in IEEE Systems Journal, vol. 7, no. 4, pp. 825-831, Dec. 2013.
    [18] 李冠諭,「高科技廠房風機濾網機組之無感測器智慧監控系統研製」,台灣科技大學電機工程碩士論文,民國一百一十年八月。
    [19] 劉呈軒,「應用於電動機車之永磁同步電動機控制策略究」,台灣大學電機工程碩士論文,民國一百零九年七月。
    [20] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, 1995, pp. 1942-1948 vol.4.
    [21] K. F. Man, K. S. Tang and S. Kwong, “Genetic algorithms: concepts and applications [in engineering design],” in IEEE Transactions on Industrial Electronics, vol. 43, no. 5, pp. 519-534, Oct. 1996.
    [22]
    Mathworks,” Global Optimization Toolbox,” Avaliable : https:// www.mathworks.com/help/gads/index.html?s_tid=CRUXlftnav

    QR CODE