簡易檢索 / 詳目顯示

研究生: 方耀霆
Yao-Ting Fang
論文名稱: 直流電壓輸入式變頻冷氣機效率控制的研製
Implementation of Efficiency Control for a DC-Input-Voltage Variable-Frequency Air Conditioner
指導教授: 劉添華
Tian-Hua Liu
口試委員: 李永勳
Yuang-Shung Lee
楊勝明
Sheng-Ming Yang
徐國鎧
Guo-Kai Syu
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 120
中文關鍵詞: 變頻冷氣機最佳效率控制交錯式降壓型轉換器
外文關鍵詞: variable-frequency air conditioner, optimal efficiency control, interleaving buck converter
相關次數: 點閱:175下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討直流電壓輸入式變頻冷氣機的最佳效率控制,研製一交錯式降壓型轉換器,以調整冷氣機的直流鏈電壓,並減少輸入電流的漣波。
    文中,利用電壓與電流感測電路,偵測相關的資訊。然後,利用本文所提出的最佳效率控制,調整冷氣機的直流鏈電壓,以減少電動機和變頻器的損失,使冷氣機運轉在最佳效率。
    本文使用德州儀器公司所生產的TMS-320-F2808數位信號處理器作為控制核心。實測結果,說明本文所提方法的正確性與可行性。


    The thesis investigates the optimal efficiency control of a dc-input-voltage variable-frequency air conditioner. An interleaving buck converter is implemented to adjust the dc-bus voltage of the air conditioner and to reduce the input current ripple.
    By using the voltage and current sensing circuits, the relative information can be obtained. Then, an optimal efficiency control is used to adjust the dc-bus voltage, and then reduce the losses of the motor and the inverter. As a result, an optimal efficiency of the air conditioner can be achieved.
    A digital signal processor, TMS-320-F2808, made by Texas Instruments Company, is used as the control center. Experimental results can validate the correctness and feasibility of the proposed method.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 XI 符號索引 XII 第一章 緒論 1 1.1 背景及動機 1 1.2 文獻回顧 2 1.3 研究目的 4 1.4 論文大綱 6 第二章 直流無刷電動機 7 2.1 簡介 7 2.2 結構與特性 8 2.3 數學模式 11 2.4 驅動原理 15 第三章 直流供電式冷氣機介紹 20 3.1 簡介 20 3.2 直流供電式冷氣機系統 20 3.2.1 直流與交流供電冷氣機系統比較 23 3.2.2 變頻與定頻冷氣機的比較 25 3.3 驅動系統 28 3.4 效率分析 30 3.4.1 變頻器效率 31 3.4.2 直流無刷電動機效率 34 3.4.3 冷氣機整體效率 39 第四章 交錯式降壓型轉換器 40 4.1 簡介 40 4.2 轉換器電路分析 41 4.3 閉迴路電壓控制 49 4.4 儲能電感 50 4.5 輸出電容 54 4.6 功率開關及功率二極體 56 4.7 效率控制 59 第五章 系統研製 61 5.1 簡介 61 5.2 硬體電路 63 5.2.1 交錯式降壓型轉換器 63 5.2.2 感測電路 65 5.2.3 過電流保護電路 68 5.2.4 電源電路 69 5.2.5 RS485通訊電路 71 5.2.6 振動計 73 5.2.7 數位信號處理器系統 74 5.3 軟體程式設計 77 5.3.1 主程式流程 78 5.3.2 中斷程式流程 79 第六章 實測結果 85 6.1 簡介 85 6.2 實測結果 87 第七章 結論與建議 112 參考文獻 113

    [1] 台灣電力公司, http://www.taipower.com.tw
    [2] D. Hamza, M. Pahlevaninezhad, and P. K. Jain, “Implementation of a novel digital active EMI technique in a DSP-based DC–DC digital controller used in electric vehicle (EV),” IEEE Transactions Power Electronics, vol. 28, no. 7, pp. 3126-3137, July 2013.
    [3] V. Schwarzer and R. Ghorbani, “Drive cycle generation for design optimization of electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 26, no. 1, pp. 89-97, Jan. 2013.
    [4] M. Bertoluzzo and G. Buja, “Development of electric propulsion systems for light electric vehicles,” IEEE Transactions on Industrial Informatics, vol. 7, no. 3, pp. 428-435, Aug. 2011.
    [5] S. Kim, G. Lee, J. Hong, and T. Jung, “Design process of interior PM synchronous motor for 42-V electric air-conditioner system in hybrid electric vehicle,” IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1590-1593, June 2008.
    [6] M. Arias, D. G. Lamar, J. Sebastián, D. Balocco, and A. A. Diallo, “High-efficiency LED driver without electrolytic capacitor for street lighting,” IEEE Transactions on Industry Applications, vol. 49, no. 1, pp. 127-137, Jan./Feb. 2013.
    [7] R. S. Balog, W. W. Weaver, and P. T. Krein, “The load as an energy asset in a distributed DC smartgrid architecture,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 253-260, Mar. 2012.
    [8] M. Kumar, S. N. Singh, and S. C. Srivastava, “Design and control of smart DC microgrid for integration of renewable energy sources,” IEEE PESGM-2012, pp. 1-7, 2012.
    [9] K. Shenai and K. Shah, “Smart DC micro-grid for efficient utilization of distributed renewable energy,” IEEE Energytech-2011, pp. 1-5, 2011.
    [10] K. T. Chau, C. C. Chan, and C. Liu, “Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2246-2257, June 2008.
    [11] M. Cheng, W. Hua, J. Zhang, and W. Zhao, “Overview of stator-permanent magnet brushless machines,” IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5087-5101, Nov. 2011.
    [12] H. Murakami, H. Kataoka, Y. Honda, S. Morimoto, and Y. Takeda, “Highly efficient brushless motor design for an air-conditioner of the next generation 42V vehicle,” IEEE IAS-2001, pp. 461-466, 2001.
    [13] S. Jang, S. Jeong, D. Ryu, and S. Choi, “Comparison of three types of PM brushless machines for an electro-mechanical battery,” IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3540-3543, Sep. 2000.
    [14] M. Hsieh, I. Lin, Y. Hsu, and R. A. McMahon, “Design of brushless doubly-fed machines based on magnetic circuit modeling,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3017-3020, Nov. 2012.
    [15] D. C. Hanselman, “Effect of skew, pole count and slot count on brushless motor radial force, cogging torque and back EMF,” IEE Proceedings-Electric Power Applications, vol. 144, no. 5, pp. 325-330, Sep. 1997.
    [16] D. G. Dorrell, M. Hsieh, and A. M. Knight, “Alternative rotor designs for high performance brushless permanent magnet machines for hybrid electric vehicles,” IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 835-838, Feb. 2012.
    [17] J. Shao, D. Nolan, M. Teissier, and D. Swanson, “A novel microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive fuel pumps,” IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1734-1740, Nov./Dec. 2003.
    [18] T. Kim and M. Ehsani, “Sensorless control of the BLDC motors from near-zero to high speeds,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1635-1645, Nov. 2004.
    [19] J. X. Shen and S. Iwasaki, “Sensorless control of ultrahigh-speed PM brushless motor using PLL and third harmonic back EMF,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 421-428, Apr. 2006.
    [20] Y. Lai and Y. Lin, “Novel back-EMF detection technique of brushless DC motor drives for wide range control without using current and position sensors,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 934-940, Mar. 2008.
    [21] Q. Jiang, C. Bi, and R. Huang, “A new phase-delay-free method to detect back EMF zero-crossing points for sensorless control of spindle motors,” IEEE Transactions on Magnetics, vol. 41, no. 7, pp. 2287-2294, July 2005.
    [22] P. Damodharan and K. Vasudevan, “Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference,” IEEE Transactions on Energy Conversion, vol. 25, no. 3, pp. 661-668, Sep. 2010.
    [23] B. Lee, T. Kim, and M. Ehsani, “On the feasibility of four-switch three-phase BLDC motor drives for low cost commercial applications: topology and control,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 164-172, Jan. 2003.
    [24] J. S. Lawler, J. M. Bailey, J. W. McKeever, and J. Pinto, “Extending the constant power speed range of the brushless DC motor through dual-mode inverter control,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 783-793, May 2004.
    [25] A. Sathyan, N. Milivojevic, Y. Lee, M. Krishnamurthy, and A. Emadi, “An FPGA-based novel digital PWM control scheme for BLDC motor drives,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3040-3049, Aug. 2009.
    [26] P. Crnosija, R. Krishnan, and T. Bjazic, “Transient performance based design optimization of PM brushless DC motor drive speed controller,” IEEE ISIE-2005, vol. 3, pp. 881-886, June 2005.
    [27] D. Kim, K. Lee, and B. Kwon, “Commutation torque ripple reduction in a position sensorless brushless DC motor drive,” IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1762-1768, Nov. 2006.
    [28] Z. Y. Pan and F. L. Luo, “Novel soft-switching inverter for brushless DC motor variable speed drive system,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 280-288, Mar. 2004.
    [29] Z. Y. Pan and F. L. Luo, “Novel resonant pole inverter for brushless DC motor drive system,” IEEE Transactions on Power Electronics, vol. 20, no. 1, pp. 173-181, Jan. 2005.
    [30] Y. Lai, F. Shyu, and Y. Chang, “Novel loss reduction pulsewidth modulation technique for brushless DC motor drives fed by MOSFET inverter,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1646-1652, Nov. 2004.
    [31] B. Gu, J. S. Park, J. Choi, and I. Jung, “A design of PWM converter inverter system for building air conditioner compressor,” INTELEC-2009, pp. 1-3, 2009.
    [32] S. Singh and B. Singh, “A voltage-controlled PFC cuk converter-based PMBLDCM drive for air-conditioners,” IEEE Transactions on Industry Applications, vol. 48, no. 2, pp. 832-838, Mar./Apr. 2012.
    [33] T. Raminosoa, B. Blunier, D. Fodorean, and A. Miraoui, “Design and optimization of a switched reluctance motor driving a compressor for a PEM fuel-cell system for automotive applications,” IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 2988-2997, Sep. 2010.
    [34] J. F. Gieras and J. Saari, “Performance calculation for a high-speed solid-rotor induction motor,” IEEE Transactions on Industrial Electronics, vol. 59, no. 6, pp. 2689-2700, June 2012.
    [35] B. Stumberger, T. Marcic, and M. Hadziselimovic, “Direct comparison of induction motor and line-start IPM synchronous motor characteristics for semi-hermetic compressor drives,” IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2310-2321, Nov./Dec. 2012.
    [36] Y. Yeh, M. Hsieh, and D. G. Dorrell, “Different arrangements for dual-rotor dual-output radial-flux motors,” IEEE Transactions on Industry Applications, vol. 48, no. 2, pp. 612 - 622, Mar./Apr. 2012.
    [37] K. T. Chau, C. C. Chan, and C. Liu, “Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2246-2257, June 2008.
    [38] J. Park, S. Hwang, and J. Kim, “Sensorless control of brushless DC motors with torque constant estimation for home appliances,” IEEE Transactions on Industry Applications, vol. 48, no. 2, pp. 677-684, Mar./Apr. 2012.
    [39] J. Hur, S. Rhyu, I. Jung, H. Sung, and B. Kwon, “three-dimensional characteristic analysis of micro BLDC motor according to slotless winding shape,” IEEE Transactions on Magnetics, vol. 39, no. 5, pp. 2989-2991, Sep. 2003.
    [40] D. C. Hanselman, Brushless Permagnent-Magnet Motor Design, New York: McGraw-Hill, 1994.
    [41] P. Pillay and R. Krishnan, “Modeling, simulation, and analysis of permanent-magnet motor drives, part II: the brushless DC motor drive,” IEEE Transactions on Industry Applications, vol. 25, no. 2, pp. 274-279, Mar./Apr. 1989.
    [42] D. C. Hanselman, Brushless Permagnent Magnet Motor Design, Cranston, R.I. : The Writers' Collective, 2003.
    [43] 孫清華,最新無刷直流馬達,全華科技圖書, Dec. 2001。
    [44] Y. Lai and Y. Lin, “Novel back-EMF detection technique of brushless DC motor drives for wide range control without using current and position sensors,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 934-940, Mar. 2008.
    [45] 蕭明哲、沈志秋,冷凍空調概論,全華科技圖書,Oct. 2008。
    [46] W. F. Stoecker, J. W. Jones, 蘇金佳(譯),冷凍與空調(Second Edition),Mar. 2010。
    [47] 李居芳,冷凍空調概論(修訂五版),全華科技圖書,Feb. 2009。
    [48] 楊雅嵐,空調系統產品與功率模組技術趨勢,工業技術研究院IEK電子分項,Mar. 2012。
    [49] 台灣區冷凍空調工程工業同業公會, http://www.hvac-net.org.tw
    [50] 台灣日立股份有限公司, http://www.taiwan-hitachi.com.tw
    [51] 良峰冷氣空調公司, http://www.renfoss.com.tw
    [52] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics Converter, Applications and Design, John Wiley & Sons, 3rd Edition, 2003.
    [53] A. E. Fitzgerald, C. Kingsley, and S. D. Umans, Electric Machinery, McGraw-Hill, Inc.,1992.
    [54] H. Hamalainen, J. Pyrhonen, and J. Nerg, “AC resistance factor in one-layer form-wound winding used in rotating electrical machines,” IEEE Transactions on Magnet, vol. 49, no. 6, pp. 2967-2973, June 2013.
    [55] J. Garcia, A. J. Calleja, E. L. Corominas, and D. G. Vaquero, “Interleaved buck converter for fast PWM dimming of high-brightness LEDs,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2627-2636, Sep. 2011.
    [56] H. Choi, “Interleaved boundary conduction mode (BCM) buck power factor correction (PFC) converter,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2629-2634, June 2013.
    [57] I. Lee, S. Cho, and G. Moon, “Interleaved buck converter having low switching losses and improved step-down conversion ratio,” IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3664-3675, Aug. 2012.
    [58] C. S. Moo, Y. J. Chen, H. L. Cheng, and Y. C. Hsieh, “Twin-buck converter with zero-voltage transition,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2366-2371, June 2011.
    [59] 梁適安,交換式電源供給器之理論與實務設計(修訂版),全華圖書,Sep. 2008。
    [60] A. M. Knight, J. C. Salmon, and J. Ewanchuk, “Integration of a first order eddy current approximation with 2D FEA for prediction of PWM harmonic losses in electrical machines,” IEEE Transactions on Magnetics, vol. 49, no. 5, pp. 1957-1960, May 2013.
    [61] M. S. Lancarotte, C. Goldemberg, and A. D. A. Penteado, “Estimation of FeSi core losses under PWM or DC bias ripple voltage excitations,” IEEE Transactions on Energy Conversion, vol. 20, no. 2, pp. 367-372, June 2005.
    [62] K. Yamazaki and S. Watari, “Loss analysis of permanent-magnet motor considering carrier harmonics of PWM inverter using combination of 2-D and 3-D finite-element method,” IEEE Transactions on Magnetics, vol. 41, no. 5, pp. 1980-1983, May 2005.
    [63] R. Liu, C. C. Mi, and D. W. Gao, “Modeling of eddy-current loss of electrical machines and transformers operated by pulsewidth-modulated inverters,” IEEE Transactions on Magnetics, vol. 44, no. 8, pp. 2021-2028, Aug. 2008.
    [64] M. Zhang, W. Liu, and N. Zhao, “Estimation of eddy-current loss in surface mounted PM BLDC motor,” ICEMS-2011, pp. 1-4, 2011.
    [65] 廖文煇,圖形監控實務,全華圖書,Apr. 2009。

    QR CODE