簡易檢索 / 詳目顯示

研究生: 羅一峰
Yi-Feng Luo
論文名稱: 鋰離子電池多階段定電流充電技術之研究
Research of Multi-Step Constant-Current Charging Technology for Lithium-ion Batteries
指導教授: 劉益華
Yi-Hua Liu
口試委員: 陳秋麟
Chern-Lin Chen
陳建富
Jiann-Fuh Chen
梁從主
Tsorng-Juu Liang
莫清賢
Chin-Sien Moo
劉添華
Tian-Hua Liu
羅有綱
Yu-Kang Lo 
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 144
中文關鍵詞: 田口方法直交表多階段完全充電波形多階段快速充電波形多階段定電流充電技術四相交錯式降壓轉換器
外文關鍵詞: Taguchi method, orthogonal array, multi-step complete charging pattern, multi-step rapid charging pattern, multi-step constant-current charging technology, four-phase interleaved buck converter.
相關次數: 點閱:384下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來鋰離子電池在可攜式產品、電動車及再生能源系統之能量儲存上扮演相當重要之角色。為了使鋰離子電池發揮最大性能,一個快速又安全的充電技術變得相當重要。因此,本論文提出以田口方法為基礎,運用直交表分別針對多階段完全充電波形及多階段快速充電波形進行搜尋。本論文詳細分析探討多階段定電流充電技術之問題描述、實現過程及參數設定方法。另外,本論文提出一四相交錯式降壓轉換器作為充電電路,並運用元件可程式規劃邏輯閘陣列數位控制器完成多階段定電流充電技術。本論文詳細分析探討多階段數位充電機之硬體及韌體架構。
    實驗結果顯示多階段完全充電波形在157.4分鐘內能達到96.6%的放電容量,而多階段快速充電波形在48.2分鐘內能達到86.9%的放電容量,因此田口方法確實能達到多階段充電波形之搜尋,並具有快速收斂及容易實現等優點。


    Lithium-ion batteries are playing important roles as energy storage solutions for portable devices, automotive electronics and renewable energy systems. In order to maximize the performance of lithium–ion batteries, an advanced rapid charging pattern is required. In this dissertation, a Taguchi-based algorithm is presented. Orthogonal arrays are implemented to determine the multi-step complete charging pattern (MCCP) and the multi-step rapid charging pattern (MRCP) for multi-step constant current charging technology, respectively. The problem formulation, implementation procedure and parameter setting method are described and explained in detail for multi-step constant current charging technology. In addition, in this dissertation, a four-phase interleaved buck converter is used as the power stage and a field programmable gate array (FPGA) digital-controller is utilized to realize multi-step constant-current charging technology. The hardware and firmware parts of the proposed system will also be described and explained in detail.
    Experimental results show that the obtained multi-step complete charging pattern is capable of charging the lithium–ion batteries to 96.6% capacity in 157.4 minutes. Experimental results show that the obtained multi-step rapid charging pattern is capable of charging the lithium–ion batteries to 86.9 % capacity in 48.2 minutes. Therefore, the proposed technique can quickly converge to the multi-step charge pattern, and it can easily be implemented.

    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究目的 3 1.4 論文大綱 4 第二章 二次電池及充電技術簡介 7 2.1 電池構造及化學反應 7 2.2 二次電池種類及電學特性 9 2.3 二次電池充電技術 14 第三章 田口方法簡介及多階段充電波形搜尋 21 3.1田口方法概要 21 3.1.1 田口方法之介紹 21 3.1.2田口方法之步驟 23 3.1.3 直交表實驗設計 25 3.2田口方法搜尋之多階段充電波形 30 3.2.1 問題描述 30 3.2.2 田口方法搜尋流程 32 第四章 多階段數位充電機之硬體架構 41 4.1降壓式轉換器工作原理 42 4.1.1 同步降壓式轉換器原理 44 4.1.2 單相降壓式轉換器操作模式 47 4.1.3 四相交錯式降壓轉換器操作模式 48 4.1.4 單相降壓轉換器及四相交錯式降壓轉換器之輸出漣波 49 4.2 降壓轉換器之交流小信號模型 51 4.2.1單相降壓轉換器之小信號模型 51 4.2.2四相交錯式降壓轉換器之小信號模型 56 4.3 四相交錯式降壓轉換器元件參數設計 57 4.4 四相交錯式降壓轉換器之閉迴路補償器設計與分析 59 第五章 多階段數位充電機之韌體架構 65 5.1 PGA晶片及硬體簡介 66 5.2 多階段數位充電器之韌體架構及程式流程 67 5.3 類比數位轉換器 68 5.3.1 類比數位轉換器簡介 68 5.3.2 類比數位轉換器程式流程圖 71 5.3.2 類比數位轉換器程式驗證 72 5.4數位濾波器 73 5.4.1 濾波器簡介 73 5.4.2 數位濾波器種類 76 5.4.3 有限脈衝響應濾波器設計 77 5.4.4 數位濾波器程式流程圖 79 5.4.5 數位濾波器程式驗證 81 5.5 數位PID補償器 82 5.5.1 數位PID補償器動作原理 82 5.5.2 數位PID補償器程式流程圖 84 第六章 多階段充電波形結果及數位充電機之實現 87 6.1 多階段充電波形搜尋之規格及參數 87 6.2 多階段完全充電波形搜尋 88 6.2.1 重疊參數設定 88 6.2.2無重疊參數設定 96 6.3 多階段快速充電波形搜尋 103 6.3.1使用最大值法求解各因子水準 103 6.3.2使用平均法求解各因子水準 110 6.4 鋰離子電池規格與電流輸出參數 119 6.5 四相交錯式降壓轉換器實體電路及波形量測 120 第七章 結論與未來研究方向 131 7.1 結論 131 7.2 未來研究方向 132 參考文獻 135 作者簡介 143

    [1] S. Lee, J. Kim, J. Lee, and B. H. Cho, “State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge,” J. Power Sources, vol. 185, no. 2, pp. 1367–1373, Dec. 2008.
    [2] J. Lee, O. Nam, and B.H. Cho, “Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering,” J. Power Sources, vol. 174, no. 1, pp. 9–15, Nov. 2007.
    [3] Y. C. Chuang and Y. L. Ke, “High-efficiency and low-stress ZVT–PWM DC-to-DC converter for battery charger,” IEEE Trans. on Industrial Electronics, vol. 55, no. 8, pp.3030–3037, Aug. 2008.
    [4] I. S. Kim, “Nonlinear state of charge estimator for hybrid electric vehicle battery,” IEEE Trans. on Power Electronics, vol. 23, no. 4, pp. 2027–2034, July 2008.
    [5] M. A. Alahmad and H. L. Hess, “Evaluation and analysis of a new solid-state rechargeable microscale lithium battery,” IEEE Trans. on Industrial Electronics, vol. 55, no. 9, pp.3391–3401, Sept. 2008.
    [6] M. Dubarry, N. Vuillaume, and B. Y. Liaw, “From single cell model to battery pack simulation for Li-ion batteries,” J. Power Sources, vol. 186, no. 2, pp. 500–507, Jan. 2009.
    [7] L. R. Chen, “PLL-based battery charge circuit topology,” IEEE Trans. on Industrial Electronics, vol. 51, no. 6, pp. 1344–1346, Dec. 2004.
    [8] S. S. Zhang, “The effect of the charging protocol on the cycle life of a Li-ion battery,” J. Power Sources, vol. 161, no. 2, pp. 1385–1391, Oct. 2006.
    [9] B. P. McGrath, D. G. Holmes, P. J. McGoldrick, and A. D. McIver, “Design of a soft-switched 6-kW battery charger for traction applications,” IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1136–1144, July 2007.
    [10] A. Kirchev, M. Perrin, and E. Lemaire et al, “Studies of the pulse charge of lead-acid batteries for PV applications Part I. Factors influencing the mechanism of the pulse charge of the positive plate,” J. Power Sources, vol. 177, no. 1, pp. 217–225, Feb. 2008.
    [11] S. S. Zhang, “The effect of the charging protocol on the cycle life of a Li-ion battery,” J. Power Sources, vol. 161, no. 2, pp. 1385–1391, Oct. 2006.
    [12] L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 398–405, Feb. 2007.
    [13] P. Thounthong, S. Rael, and B. Davat, “Control algorithm of fuel cell and batteries for distributed generation system,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 148–155 Mar. 2008.
    [14] T. Ikeyaa et al., “Multi-step constant-current charging method for an electric vehicle nickel/metal hydride battery with high-energy efficiency and long cycle life,” J. Power Sources, vol. 105, no. 1, pp. 6–12, Jan. 2002.
    [15] J. H. Yan, H. Y. Chen, W. S. Li, C. I. Wang, and Q. Y. Zhan , “A study on quick charging method for small VRLA batteries,” J. Power Sources, vol. 158, no. 2, pp. 1047–1053, Aug. 2006.
    [16] C. F. Juang, C. M. Lu, C. Lo, and C. Y. Wang, “Ant colony optimization algorithm for fuzzy controller design and its FPGA implementation,” IEEE Trans. on Industrial Electronics, vol. 55, no. 3, pp. 1453–1462, Mar. 2008.
    [17] F. Tao, D. Zhao, Y. Hu, and Z. Zhou, “Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system,” IEEE Trans. on Industrial Electronics, vol. 4, no. 4, pp. 315–327, Nov. 2008.
    [18] B. Biswal, P. K. Dash, and B. K. Panigrahi, “Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization,” IEEE Trans. on Industrial Electronics, vol. 56, no. 1, pp. 212–220, Jan. 2009.
    [19] K. Sundareswaran and V. T. Sreedevi, “Boost converter controller design using queen-bee-assisted GA,” IEEE Trans. on Industrial Electronics, vol. 56, no. 3, pp. 778–783, Mar. 2009.
    [20] Y. H. Liu, J. H. Teng, and Y. C. Lin “Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm,” IEEE Trans. on Industrial Electronics, vol. 52, no. 5, pp. 1328–1336, Oct. 2005.
    [21] P. J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, New York: McGraw-Hill, 1996.
    [22] D. Liu and Ying Cai, “Taguchi method for solving the economic dispatch Problem with nonsmooth cost functions,” IEEE Trans. on Power Systems, vol. 20, no. 4, pp. 2006–2014, Nov. 2005.
    [23] Y. T. Liu, R. F. Fung, and C. C. Wang, “Application of the nonlinear, double-dynamic Taguchi method to the precision positioning device using combined piezo-VCM actuator,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 2, pp. 240–250, Feb. 2007.
    [24] W. C. Weng, F. Yang, and A. Z. Elsherbeni, “Linear antenna array synthesis using Taguchi’s method: a novel optimization technique in electromagnetics,” IEEE Trans. on Antennas and Propagation, vol. 55, no. 3, pp. 723–730, Mar. 2007.
    [25] H. H. Rivera, J. S. Leal, and A. V. Chavez, “Improving a soldering process applying the dual response approach to a Taguchi's orthogonal array,” Int. Conf. Computers & Industrial, pp. 1174-1178, July 2009.
    [26] Y. P. Chang, C. Low, and C. J. Wu, “Optimal design of discrete-value passive harmonic filters using sequential neural-network approximation and orthogonal array,” IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1813–1821 July 2007.
    [27] L. M. Moore, M. D. McKay, and K. S. Campbell, “Combined array experiment design,” Reliability Engineering & System Safety, vol. 91, no. 10-11, pp. 1281–1289 Oct.-Nov. 2006.
    [28] C. C. Chou, N. M. Liu and J. T. Horng et al, “Designing parameter optimization of a Parallel-Plain Fin heat sink using the grey-based fuzzy algorithm with the orthogonal arrays,” International Journal of Thermal Sciences, vol. 48, no. 2, pp. 2271–2279 Dec. 2009.
    [29] 朱順益,「鋰電池快速充電波形設計」,義守大學電機工程研究所論文,民國九十三年六月。
    [30] 陳羿廷、陳玉惠,「高分子電解質在鋰二次電池上之應用研究現況」,中原大學化學研究所專題報導,民國九十三年第六十二卷第四期。
    [31] 吳敏旭,「串聯電池組電池管理系統之開發」,長庚大學電機工程研究所論文,民國九十三年五月。
    [32] 李嘉猷,「應用DSP於電動車充電站快充控制系統之研究」,國立成功大學電機工程系碩士學位論文,民國九十年六月。
    [33] 屠海令、吳伯榮、朱磊,「先進電池-電化學電源導論」,工業出版社冶金,2006年5月。
    [34] 林季鋒,「應用模糊控覺於正負脈衝充電法之快速充電器」,國立中央大學電機工程系碩士學位論文,民國九十一年六月。
    [35] 趙介雷,「鋰電池特性之研究與其充電器之設計」,大葉大學電機工程系碩士學位論文,民國九十三年六月。
    [36] 建國理工生科所,「行動式電子產品的心臟-二次電池(一)」,http://www.getgoal.com.tw/tech/tech.htm。
    [37] H. J. Chiu, L. W. Lin, P. L. Pan, and M. H. Tseng, “A novel rapid charger for lead-acid batteries with energy recovery,” IEEE Trans. on Power Electronics, vol. 21, no. 3, pp. 640–647, May 2006.
    [38] J.B. Wang, and C.Y. Chuang, “Design considerations of microprocessor-controlled multiphase battery charger with fast-charging strategy,” IET on Electric Power Applications, vol. 1, no. 2, pp. 143–152, Mar. 2007.
    [39] C. H. Lin, C. L. Chen, Y. H. Lee, S. J. Wang, C. Y. Hsieh, H. W. Huang and K. H. Chen, “Fast charging technique for Li-ion battery charger,” Proc. of IEEE Electronics, Circuits and Systems International Conference, pp. 618 – 621, Sep. 2008.
    [40] V. Svoboda, H. Doering, and J. Garche, “The influence of fast charging on the performance of VRLA batteries,” J. Power Sources, vol. 144, no. 1, pp. 244–254, Jun. 2005.
    [41] M. James, J. Grummett, and M. Rowan et al, “Application of pulse charging techniques to submarine lead-acid batteries,” J. Power Sources, vol. 162, no. 2, pp. 878–883, Nov. 2006.
    [42] 劉彥余,「最佳化鋰電池充電法則研究與充電電路之實現」,國立台灣科技大學電機工程系碩士學位論文,民國九十七年一月。
    [43] 李輝煌,「田口方法:品質設計的原理與實務」,高立圖書有限公司,2000年。
    [44] C. S. Moo, H. C. Yen, C. R. Lee, and I. S. Tsai, “Designing LC filters by consecutive orthogonal arrays,” IEE Proceedings on Electric Power Applications, vol. 150, no. 5, pp. 569–574, Sep. 2003.
    [45] R. K. Roy, “Design of experiments using the Taguchi approach,” John Wiley & Sons, Inc., 2001.
    [46] P. J. Ross, “Taguchi techniques for quality engineering,” McGraw-Hill, Inc., 1988.
    [47] P. C. Lin, Y. H. Liu, Y. H. Liu, J. K. Chen, and C. H. Chen, “A fully digital rapid charger for electric scooters,” Proceedings of the Eighteenth Symposium on Electrical Vehicles, 2001.
    [48] W. Huang, G. Schuellein, and D. Clavette, “A Scalable Multiphase Buck Converter with Average Current Share Bus,” in Proc. IEEE APEC '03, vol. 1, pp. 438-443, 2003.
    [49] W. Huang, “A new control for multi-phase buck converter with fast transient response,” in Proc. IEEE APEC’01, vol. 1, pp. 273-279, 2001.
    [50] 翁維德,「場色序法結合區域調光之RGB LED背光模組驅動電源系統」,國立台灣科技大學電機工程系碩士學位論文,民國九十八年七月。
    [51] N. Mohan, T. M. Undeland, W. Robbins, “Power Electronics Converters Application and Design,” 3rd Edition, 2003.
    [52] H. K. Ji, and H. J. Kim, “Active Clamp Forward Converter with MOSFET Synchronous Rectification,” in Proc. IEEE PESC’94, vol. 2, pp. 895-901, 1994.
    [53] E. Sakai, and K. Harada, “Synchronous Rectifier for Low Voltage Switching Converter,” in Proc. IEEE INTELEC’95, pp. 471-475, 1995.
    [54] 王順忠,「電力電子學」,臺灣東華書局股份有限公司, 2001年。
    [55] R. W. Erickson, D. Maksmovic, “Fundamentals of Power Electronics,” 2nd Edition, 2000.
    [56] P. L. Wong, “Performance Improvements of Multi-channel Inter- leaving Voltage Regulator Modules with Integrated Coupling Inductors,” Ph.D. Dissertation, Virginia Polytech. Insit. State Univ., Mar. 2001.
    [57] Texas Instruments, “12-bit, 4-channel serial output sampling ANALOG-TO-DIGITAL CONVERTER,” Data Sheet, SBAS084B, July 2001.
    [58] 曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有限公司,民國96年11月。
    [59] 賴文能、林國祥、高志暐,「數位信號處理」第三版,高立圖書有限公司,2007年。
    [60] 劉金琨,「先進PID控制-MATLAB仿真」,電子工業出版社,2007年5月。
    [61] 趙清風,「控制工程初階-使用MATLAB Simulink」,全華科技圖書,民國90年12月。
    [62] 劉金琨,「先進PID控制MATLAB仿真」第二版,電子工業出版社,2007年。

    無法下載圖示 全文公開日期 2015/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE