簡易檢索 / 詳目顯示

研究生: 陳偉中
Wei-Zhong Chen
論文名稱: 臭氧產生器之單相電流源換流器電源供應研製
Development of Single-phase Current Source Inverter for Ozonizer Power Supplies
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 林法正
Faa-Jeng Lin
劉傳聖
Chuan-Sheng Liu
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 臭氧產生器之單相電流源換流器交錯式降壓型轉換器電阻-電感-電容並聯諧振電路
外文關鍵詞: single-phase current source inverter for ozonizer, interleaved buck converter, RLC parallel resonant circuit
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研發臭氧產生器之電源供應器,電源供應為具有高壓、高頻輸出的單相電流源換流器。本系統整體電源供應器包含交錯式降壓型轉換器、單相電流源換流器及等效電阻-電感-電容並聯諧振負載。交錯式降壓型轉換器作為直流-直流轉換器,輸入側利用三相橋式整流器將市電電壓轉換為直流電壓,再透過控制降壓型轉換器以產生直流電流,達到定功率及定電流源之功能。如此可減少單相電流源換流器之輸入電流漣波量,提高系統容量。單相電流源換流器將直流電流源轉換為交流電源,並接昇壓變壓器,作為臭氧產生器之高壓放電管之電源使用。本文電阻-電感-電容負載的諧振頻率配合單相電流源換流器之輸出頻率,提供負載高功率因數之電源及減少切換損失。
    本系統採用32位元之數位信號處理器TMS320F28069作為控制之核心,控制策略皆由軟體程式以C語言完成,有效減少硬體之電路。本系統作臭氧產生器之電源供應端完成輸出功率達1.0kW,此時變壓器一次側輸出電流5.35A,輸出電壓為431V,臭氧濃度百分比為11.15%。本文亦完成由並聯諧振負載模擬臭氧產生器之整合系統,其輸出功率達2.0kW,此時輸出電流有效值為7.84A,輸出電壓有效值為263V,輸出頻率為1kHz,功率因數為0.99,整體系統效率約為91%。由以上之實測結果驗證本文架構與控制策略之可行性。


    This thesis aims to develop a high-voltage and high-frequency single-phase current source inverter power supply for ozonizer. The whole system is composed of an interleaved buck converter, a single-phase current source inverter and a RLC parallel resonant load. Interleaved buck converter as DC-DC converter uses a three-phase bridge rectifier to convert grid voltage to dc-link voltage. With controlling the output current of the interleaved buck converter, the features of constant output power and constant output current can be achieved. This control strategy could reduce the value of ripple of the output current and increase the system power capacity. Single-phase current source inverter converts direct current to alternating current, and connects with a transformer as a power supply for ozonizer. This RLC parallel resonant circuit can supply a high power factor and low switching loss output by working at the resonant frequency with the single-phase current source inverter.
    The 32-bit digital signal processor, TMS320F28069, is adopted as the system core. All control strategies are accomplished with C language, which can reduce hardware components. The ouput power of the system as power supply for ozonizer reaches to 1.0kW, the ouput current of the primary side of the transformer is 5.35A, the ouput voltage is 431V, and the weight percent of the ozone is 11.15%. The thesis also accomplished a system with a parallel resonant circuit to simulate ozonizer, which output power reaches to 2.0W. The output current is 7.84A, the output voltage is 263V, the output frequency is 1kHz, the output power factor is 0.99, and the system efficiency is 91%. The feasibility of the proposed system structure and control strategy is verified experimentally.

    摘  要 I Abstract II 誌  謝 III 目  錄 IV 符號索引 VII 圖表索引 X 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻探討 1 1.2.1 交錯式降壓型轉換器 2 1.2.2 單相電流源換流器 2 1.2.3 等效電阻-電感-電容並聯諧振負載 2 1.3 系統架構與本文特色 3 1.4 本文大綱 6 第二章 降壓型直流-直流轉換器的分析及控制 7 2.1 前言 7 2.2 交錯式降壓型轉換器之控制 7 A. 交錯式脈波寬度調變控制 7 B. 降壓型轉換器的分析 9 C. 交錯式降壓型轉換器的控制 13 2.3 交錯式降壓型轉換器模擬 15 2.4 交錯式降壓型轉換器實測 19 2.5 結語 22 第三章 單相電流源換流器之控制策略 23 3.1 前言 23 3.2 單相電流源換流器之控制 23 3.3 等效電阻-電感-電容並聯諧振電路分析 25 3.4 並聯諧振負載之整合系統模擬 32 3.5 結語 35 第四章 實體製作規劃及實測 36 4.1 前言 36 4.2 數位信號處理器介面電路規劃 36 4.3 硬體規劃 38 4.3.1 降壓型轉換器 38 4.3.2 單相電流源換流器 39 4.3.3 等效電阻-電感-電容並聯諧振電路元件選用 39 4.3.4 閘極驅動電路 39 4.3.5 電壓回授電路 40 4.3.6 電流回授電路 41 4.3.7 實驗使用之儀器 42 4.4 軟體規劃 42 4.4.1 主程式流程規劃 42 4.4.2降壓型轉換器的控制程式規劃 44 4.5 臭氧產生器之電源供應實測 47 4.6 並聯諧振負載之整合系統實測 50 4.7 結語 52 第五章 結論及建議 54 5.1 結論 54 5.2 建議 55 參考文獻 56 附錄A Matlab/Simulink 模擬程式 59 附錄B 系統實體照片 61

    1. Z. Meng, T. Zhu and X. Tang, “A kind of DBD ozonizer power supply based on current source-fed parallel inductor-compensated resonant,” Journal of Central South University, vol. 47, no. 2, 2016.
    2. L. Guo, “Implementation of digital PID controllers for DC-DC converters using digital signal processors,” 2007 IEEE International Conference on Electronic and Information Technology, Chicago, IL, pp. 306-311, 2007.
    3. J. Chen, Y. Hwang, B. Hwang, Y. Jhang and Y. Ku, “A dual-mode fast-transient average-current-mode buck converter without slope-compensation,” 2018 7th International Symposium on Next Generation Electronics (ISNE), Taipei, pp. 1-4, 2018.
    4. S. Kancherla and R. K. Tripathi, “Nonlinear average current mode control for a DC-DC buck converter in continuous and discontinuous conduction modes,” TENCON 2008 - 2008 IEEE Region 10 Conference, Hyderabad, pp. 1-6, 2008.
    5. I. Lee, S. Cho and G. Moon, “Interleaved buck converter having low switching losses and improved step-down conversion ratio,” IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3664-3675, 2012.
    6. F. S. Alargt, A. S. Ashur and A. H. Kharaz, “Adaptive delta modulation controller for interleaved buck DC-DC converter,” 2017 52nd International Universities Power Engineering Conference (UPEC), Heraklion, pp. 1-6, 2017.
    7. X. Yang, S. Zong and G. Fan, “Analysis and validation of the output current ripple in interleaved buck converter,” IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, pp. 846-851, 2017.
    8. M. Esteki, E. Adib and H. Farzanehfard, “Soft switching interleaved PWM buck converter with one auxiliary switch,” 2014 22nd Iranian Conference on Electrical Engineering (ICEE), Tehran, pp. 232-237, 2014.
    9. Nirmal, P. K. Jain and A. Kumar, “Interleaved DC to DC buck converter for low power application,” 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, pp. 1-5, 2015.
    10. M. Jafari, Z. Malekjamshidi, L. Li and J. G. Zhu, “Performance analysis of full bridge, boost half bridge and half bridge topologies for application in phase shift converters,” 2013 International Conference on Electrical Machines and Systems (ICEMS), Busan, pp. 1589-1595, 2013.
    11. Y. Lo, J. Wang and S. Wu, “A new commutation method for a full-bridge current-source inverter,” 2005 International Conference on Power Electronics and Drives Systems, Kuala Lumpur, pp. 224-227, 2005.
    12. W. Na and H. Lee, “Sliding mode control design of current fed full bridge DC to DC converter for fuel cell applications,” 2011 IEEE Power and Energy Conference at Illinois, Champaign, IL, pp. 1-4, 2011.
    13. X. Zhu, D. Xu, H. Umida and K. Mino, “Current-fed phase shift controlled full bridge ZCS DC-DC converter with reverse block IGBT,” Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, Austin, Vol. 3, pp. 1605-1610, 2005.
    14. A. P. Hu, G. A. Covic and J. T. Boys, “Direct ZVS start-up of a current-fed resonant inverter,” IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 809-812, 2006.
    15. S. Wang, Y. Konishi, M. Ishitobi, S. Shirakawa and M. Nakaoka, “Current-source type parallel inductor-compensated load resonant inverter with PDM control scheme for efficient ozonizer,” 6th IEEE Power Electronics Congress. Technical Proceedings. CIEP 98 (Cat. No.98TH8375), Morelia, pp. 103-110, 1998.
    16. M. S. K. Reddy and D. Elangovan, “Analysis and simulation of ZCS current-fed full bridge high gain DC-DC converter with Synchronous rectification,” 2015 Conference on Power, Control, Communication and Computational Technologies for Sustainable Growth (PCCCTSG), Kurnool, pp. 183-187, 2015.
    17. A. Chub, R. Kosenko and A. Blinov, “Zero-voltage switching galvanically isolated current-fed full-bridge DC-DC converter,” 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Bydgoszcz, pp. 455-459, 2016.
    18. R. Arivazhagan and S. L. Prakash, “Analysis of current-fed full bridge converter with modified auxiliary circuit,” 2011 International Conference on Recent Advancements in Electrical, Electronics and Control Engineering, Sivakasi, pp. 357-362, 2011.
    19. X. Kong and A. M. Khambadkone, “Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system,” 2005 International Conference on Power Electronics and Drives Systems, Kuala Lumpur, pp. 474-479, 2005.
    20. L. Chang, T. Guo and J. Liu, “Analysis and design of a current-source CLCC resonant converter for DBD applications,” IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 1610-1621, 2014.
    21. S. A. Kanchubotla and B. M. Diong, “Analysis, simulation and testing of a novel 4-element current-source resonant inverter,” Proceedings of the 35th Southeastern Symposium on System Theory, WV, pp. 468-472, 2003.
    22. J. M. Alonso, M. S. Perdigão, D. G. Vaquero, A. J. Calleja and E. S. Saraiva, “Analysis, design, and experimentation on constant-frequency DC-DC resonant converters with magnetic control,” IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1369-1382, 2012.
    23. J. Mućko, “Parallel resonant inverter with auxiliary AC/DC converter used for induction heating,” 2011 7th International Conference-Workshop Compatibility and Power Electronics (CPE), Tallinn, pp. 415-419, 2011.
    24. M. K. Kazimierczuk and R. Cravens, “Current-source parallel-resonant DC/AC inverter with transformer,” Proceedings of Intelec 94, Vancouver, pp. 135-141, 1994.
    25. B. Yuan, X. Yang and D. Li, “A high efficiency current fed multi-resonant converter for high step-up power conversion in renewable energy harvesting,” 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, pp. 2637-2641, 2010.
    26. K. Sano and H. Fujita, “Performance of a high-efficiency switched-capacitor-based resonant converter with phase-shift control,” IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 344-354, 2011.
    27. 古盈霙,“可攜式靜音放電型臭氧產生器高壓電源供應器之設計與實作”,國立清華大學研究所碩士論文,民國96年。

    無法下載圖示 全文公開日期 2024/07/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE