簡易檢索 / 詳目顯示

研究生: 李哲銘
Jhe-Ming Lee
論文名稱: 參考運動員攀登行為之橫向凸桿抓枝機器人運動步態設計與實現
Locomotion Design and Implementation of a Sport Climbing Inspired Robot for Transverse Ledge Brachiation
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 林紀穎
Chi-Ying Lin
林沛群
Pei-Chun Lin
葉廷仁
Ting-Jen Yeh
黃緒哲
Shiuh-Jer Hunag
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 134
中文關鍵詞: 橫向抓枝飛躍抓枝運動步態設計方法平行四連桿運動姿態多運動步態設計
外文關鍵詞: Transverse brachiation, ricochetal brachiation, locomotion design procedure, parallel four-link posture, multi-locomotion design
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗室針對臺灣建築外牆特徵所開發之攀爬機器人已完成諸多運動步態開發與原型機測試,主要以橫向抓枝與飛躍抓枝兩種具代表性的運動方式進行機器人設計與實作探討。然而,因複雜手眼協調的特性,到目前為止仍然很少有與飛躍抓枝運動步態實現相關的研究,且能同時實現上述兩種運動步態的機器人開發設計更是少之又少。本研究特別分析運動員於牆面時的橫向凸桿抓握移動行為,將其分成四個運動階段:擺盪階段、順勢抓握階段、姿態轉換階段、手臂復歸階段;而飛躍抓枝則是將姿態轉換階段替換為雙手釋放階段,使系統完全釋放慣性以利提升移動性能。為了使機器人具備連續移動的能力,本研究藉由模擬分析在各階段間不同操作參數與切換條件下對於後續運動階段動態影響,並以手臂復歸階段的末狀態維持平行四連桿姿態進行運動規劃,使機器人能順暢轉換各階段並提高能量累積效率。實驗結果證實本研究設計之多種運動步態階可達成階段間的能量延續,並可進行兩個運動週期的連續移動;而成功實現的飛躍抓枝結果亦證實本研究所提設計步態可行性。最後,本研究基於前一個運動週期的最終運動姿態提出一評估指標,用於預測下一個運動週期步態實現成功的判斷依據,並可作為後續運動步態設計改良的參考。


Recently transverse brachiation robots have been developed to perform ledge climbing tasks on the wall of buildings in Taiwan. Just like conventional brachiation robots inspired from primates, the locomotion of transverse brachiation also consists of two representative styles. The first one realizes succeeding transverse movements by alternatively releasing one hand and swinging the lower limb to grab the target ledge under a system constraint that one hand is always holding on the ledge. The second style on the other hand, includes a flight phase into the locomotive cycle to realize the so called “ricochetal brachiation”. However, due to the complicated dynamics in hand-eye coordination there is still very limited research on the implementation of ricochetal brachiation and very few studies have been discussed on the development of multi-locomotion brachiation robot which can realize the above two locomotion styles. This study analyzes the transverse movement of sport climbers to propose new robot locomotion for transverse brachiation. The first elementary locomotion is classified into four phases for discussion: swing phase, target approaching phase, transition phase, and hand back-off phase. The locomotion of transverse ricochetal brachiation applies a similar design procedure but replaces the two-hand release phase with the transition phase to entirely release the system energy for further brachiation performance improvement. In this work, a design procedure that applies a parallel four-link posture constraint at the hand back-off phase is proposed to analyze the effects of phase switching conditions within each phase and derive suitable robot joint motion trajectories to coordinate smooth transition between classified phases and energy continuation. The experimental results confirm that the designed first locomotion successfully achieves energy continuation between classified phases and can perform two consecutive locomotive cycles. Moreover, the locomotion of ricochetal brachiation truly shows a better movement efficiency compared with the brachiation without including a flight phase. Finally, an evaluation index dependent on the posture at the back-off phase is proposed to predict the success rate of the next locomotive cycle, which can be treated as a comparison basis for the improvement of subsequent robot locomotion design.

目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與文獻回顧 6 1.3 本文貢獻與架構 18 第二章 系統運動步態規劃與參數設計 20 2.1 橫向抓枝與飛躍抓枝動作流程分析與設計 20 2.1.1 橫向抓枝運動步態 20 2.1.2 橫向飛躍抓枝運動步態 21 2.1.3 機器人步態設計 22 2.2 系統架構需求 24 2.3 系統參數設計 25 第三章 系統架構 28 3.1 機構設計 29 3.1.1 夾爪機構設計 30 3.1.2 剛性切換關節設計 32 3.2 機器人系統設計 33 3.2.1 系統微控制器(MCU) 34 3.2.2 致動器 35 3.2.3 直流馬達驅動模組 (L298N) 38 3.2.4 感測器 39 3.2.5 通訊裝置 42 第四章 系統動態模型推導與移動距離定義 43 4.1 擺盪階段動態模型(Phase1 : Swing Phase) 43 4.2 抓握階段動態模型(Phase2: Target Approaching Phase) 48 4.3 姿態轉換階段動態模型(Phase3: Transition Phase) 52 4.4 手臂復歸階段(Phase4: Hand Back-Off Phase) 53 4.5 雙手釋放階段(Two Hand Release Phase) 56 4.6 直流馬達動態模型 62 4.7 機器人移動距離定義與座標轉換 65 4.7.1 機器人移動距離定義 65 4.7.2 機器人座標轉換 66 第五章 系統動態分析與運動控制策略設計 68 5.1 橫向抓枝運動步態分析(TB) 68 5.1.1 步態階段與橫向連續抓枝關聯性分析 69 5.1.2 抓握階段控制策略設計 73 5.1.3 擺盪階段動態分析與切換條件設計 74 5.1.4 姿態轉換階段動態分析與切換條件設計 77 5.1.5 手臂復歸階段控制策略設計 78 5.2 橫向飛躍抓枝步態(TRB) 80 5.2.1 運動階段與橫向飛躍抓枝步態關聯性 80 5.2.2 擺盪階段切換條件分析 82 5.2.3 抓握階段切換條件分析 82 5.2.4 雙手式釋放階段切換條件分析 85 5.2.5 手臂復歸階段切換條件分析 85 5.3 機器人能量定義 87 5.4 運動步態模擬分析結果 87 第六章 實驗結果與討論 93 6.1 實驗架設 93 6.2 步態一 (Locomotion 1):橫向抓枝運動步態 94 6.2.1 擺盪實驗 94 6.2.2 單一運動步態循環實驗 95 6.2.3 橫向連續擺盪抓枝運動步態實驗 101 6.3 步態二(Locomotion 2):橫向飛躍抓枝運動步態實驗 105 6.4 實驗總結 110 第七章 結論與未來目標 111 7.1 結論 111 7.2 未來目標 111 參考文獻 113 附錄一 119

[1] A. Q. Pham, A. T. La, E. Chang, and H. M. La, "Flying-Climbing Mobile Robot for Steel Bridge Inspection," in 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 25-27 Oct. 2021 2021, pp. 230-235.
[2] J.-H. Liu and K. Padrigalan, "Design and Development of a Climbing Robot for Wind Turbine Maintenance," Applied Sciences, vol. 11, no. 5, p. 2328, 2021.
[3] S. S. Khan, A. R. Akash, S. Maaj, M. R. Hassan, and M. A. Rahman, "A Novel Mechanism Design Technique To Develop A Vertical Climbing Robot With High Mobility For Flat And Spherical Surfaces," in 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 5-7 Jan. 2021 2021, pp. 303-307.
[4] Y. Kawai, K. Ito, and H. Aoki, "Passive stabilizing mechanism for snake-like rescue robot," in 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), 10-12 Dec. 2014 2014, pp. 1740-1745.
[5] 大樓外牆修緝工作, 檢自 https://alltechabseilers.com.au/rope-access-building-inspection-brisbane/
[6] 高樓窗戶清理, 檢自 https://haktechcleaning.co.ke/service/high-rise-window-cleaning/.
[7] M. Muthugala, M. Vega-Heredia, R. E. Mohan, and S. R. Vishaal, "Design and control of a wall cleaning robot with adhesion-awareness," Symmetry, vol. 12, no. 1, p. 122, 2020.
[8] 高樓救難, 檢自 https://taipeino1.taipei/Album/Detail/75e14e87-29e9-4cec-b070-ab611ff75020?categoryId=f11aad3b-9b28-4987-954d-c896ee087c60.
[9] T. Guo, Z. D. Deng, X. Liu, D. Song, and H. Yang, "Development of a new hull adsorptive underwater climbing robot using the Bernoulli negative pressure effect," Ocean Engineering, vol. 243, p. 110306, 2022/01/01/ 2022.
[10] M. Hernando, V. Gómez, A. Brunete, and E. Gambao, "CFD Modelling and Optimization procedure of an adhesive system for a Modular Climbing Robot," Sensors, vol. 21, no. 4, p. 1117, 2021.
[11] K. Shi and X. Li, "Vacuum suction unit based on the zero pressure difference method," Physics of Fluids, vol. 32, no. 1, p. 017104, 2020.
[12] H. Eto and H. H. Asada, "Development of a Wheeled Wall-Climbing Robot with a Shape-Adaptive Magnetic Adhesion Mechanism," in 2020 IEEE International Conference on Robotics and Automation (ICRA), 31 May-31 Aug. 2020 2020, pp. 9329-9335.
[13] J. Fan, T. Xu, Q. Fang, J. Zhao, and Y. Zhu, "A Novel Style Design of a Permanent-Magnetic Adsorption Mechanism for a Wall-Climbing Robot," Journal of Mechanisms and Robotics, vol. 12, no. 3, 2020.
[14] F. Gao, J. Fan, L. Zhang, J. Jiang, and S. He, "Magnetic crawler climbing detection robot basing on metal magnetic memory testing technology," Robotics and Autonomous Systems, vol. 125, p. 103439, 2020/03/01/ 2020.
[15] S. Bian, Y. Wei, F. Xu, and D. Kong, "A four-legged wall-climbing robot with spines and miniature setae array inspired by Longicorn and Gecko," Journal of Bionic Engineering, vol. 18, no. 2, pp. 292-305, 2021.
[16] J. Liu et al., "Design, modeling and experimentation of a biomimetic wall-climbing robot for multiple surfaces," Journal of Bionic Engineering, vol. 17, no. 3, pp. 523-538, 2020.
[17] Y. Liu, L. Wang, F. Niu, P. Li, Y. Li, and T. Mei, "A track-type inverted climbing robot with Bio-inspired spiny grippers," Journal of Bionic Engineering, vol. 17, no. 5, pp. 920-931, 2020.
[18] P. Liang et al., "Design and stability analysis of a wall-climbing robot using propulsive force of propeller," Symmetry, vol. 13, no. 1, p. 37, 2020.
[19] S. Mahmood, S. H. Bakhy, and M. Tawfik, "Novel wall-climbing robot capable of transitioning and perching," in IOP Conference Series: Materials Science and Engineering, 2020, vol. 881, no. 1: IOP Publishing, p. 012049.
[20] Z. Zheng et al., "CCRobot-IV: An Obstacle-Free Split-Type Quad-Ducted Propeller-Driven Bridge Stay Cable-Climbing Robot," IEEE Robotics and Automation Letters, pp. 1-1, 2021, doi: 10.1109/LRA.2021.3099872.
[21] H. Zhu, J. Lu, S. Gu, S. Wei, and Y. Guan, "Planning Three-Dimensional Collision-Free Optimized Climbing Path for Biped Wall-Climbing Robots," IEEE/ASME Transactions on Mechatronics, vol. 26, no. 5, pp. 2712-2723, 2021.
[22] Q. Fu, Y. Guan, S. Liu, and H. Zhu, "A Novel Modular Wheel-legged Mobile Robot with High Mobility," in 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), 27-31 Dec. 2021 2021, pp. 577-582.
[23] 建築外牆窗台示意圖, 檢自 https://muyi888.pixnet.net/blog/post/245792906.
[24] 雨遮、陽台示意圖, 檢自 https://news.houseprice.tw/2345.
[25] T. Fukuda, H. Hosokai, and Y. Kondo, "Brachiation type of mobile robot," in Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments, 19-22 June 1991 1991, pp. 915-920 vol.2.
[26] S. Farzan, A. Hu, E. Davies, and J. Rogers, "Feedback Motion Planning and Control of Brachiating Robots Traversing Flexible Cables," in 2019 American Control Conference (ACC), 10-12 July 2019 2019, pp. 1323-1329.
[27] S. Tashakori, G. Vossoughi, and E. Azadi Yazdi, "Control of the CEDRA Brachiation Robot Using Combination of Controlled Lagrangians Method and Particle Swarm Optimization Algorithm," Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, vol. 44, no. 1, pp. 11-21, 2020.
[28] M. W. Gomes and A. L. Ruina, "A five-link 2D brachiating ape model with life-like zero-energy-cost motions," Journal of Theoretical Biology, vol. 237, no. 3, pp. 265-278, 2005/12/07/ 2005.
[29] D. Wan, H. Cheng, G. Ji, and S. Wang, "Non-horizontal ricochetal brachiation motion planning and control for two-link Bio-primate robot," in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 6-9 Dec. 2015 2015, pp. 19-24.
[30] H. Kajima, D. Masahiro, Y. Hasegawa, and T. Fukuda, "Energy Based Swing Control of a Brachiating Robot," in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 18-22 April 2005 2005, pp. 3670-3675.
[31] 胡婷鈞,「可於壁面凸塊進行橫向攀爬之抓枝機器人設計與運動控制策略研究」, 國立臺灣科技大學機械工系碩士論文,2018.
[32] 楊宗翰,「橫向飛躍抓枝機器人之設計改良與運動控制研究」, 國立臺灣科技大學機械工系碩士論文,2018.
[33] 田詠傑,「橫向抓枝機器人之設計與實作」, 國立臺灣科技大學機械工系碩士論文,2019.
[34] 陳振偉,「具多種運動步態之仿生式橫向抓枝機器人設計與實現」, 國立臺灣科技大學機械工系碩士論文,2020.
[35] 羅威竣,「參考壁面凸桿攀爬者運動步態之橫向抓枝機器人設計與實現」, 國立臺灣科技大學機械工系碩士論文,2021.
[36] J. Nakanishi, T. Fukuda, and D. E. Koditschek, "A brachiating robot controller," IEEE Transactions on Robotics and Automation, vol. 16, no. 2, pp. 109-123, 2000.
[37] 運動員飛躍運動步態, 檢自https://reurl.cc/ZA12OV.
[38] 人體結構比例, 檢自 https://reurl.cc/RrOK8x.
[39] 電磁鐵規格, 檢自 https://www.ruten.com.tw/item/show?22129878947818.
[40] 運動員攀附凸桿形為, 檢自 https://www.youtube.com/watch?v=kRrB2t3HO5c&t=1429s.
[41] STM32F407開發板, 檢自 http://www.st.com/resource/en/user_manual/dm00039084.pdf.
[42] DCX22L GB KL 12V, 檢自 https://www.maxongroup.com/maxon/view/product/motor/dcmotor/DCX/DCX22/DCX22L01GBSL450.
[43] GPX22UP , 檢自 https://www.maxongroup.com/maxon/view/product/gear/planetary/GPX/GPX22/GPX22-1-Stufig-UP/GPX22UPKLSL03D9CPLW.
[44] GPX22HP, 檢自 https://www.maxongroup.pt/maxon/view/product/gear/planetary/GPX/GPX22/GPX22-4-Stufig-HP/GPX22HPKLSL0243CPLW.
[45] BLS-7146MG, 檢自 https://www.amazon.com/BLS-HV7146MG-Brushless-Precision-Digital-Helicopter/dp/B087JP2BX4.
[46] L298N驅動模塊, 檢自 https://reurl.cc/YvqOYL.
[47] GY953 AHRS Nine Axis inertial navigation sensor , 檢自 https://www.aliexpress.com/item/32719990139.html.
[48] ENX16 EASY 1024IMP datasheet, 檢自https://www.maxongroup.com/medias/CMS_Downloads/DIVERSES/ENXEASY_EN.pdf.
[49] Arduino HC-05 藍芽模組, 檢自
https://jin-hua.com.tw/webc/html/product/show.aspx?num=21804.
[50] C. P. Tang, "Lagrangian dynamic formulation of a four-bar mechanism with minimal coordinates," ed: Accesssed, 2010.

無法下載圖示 全文公開日期 2027/08/08 (校內網路)
全文公開日期 2027/08/08 (校外網路)
全文公開日期 2027/08/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE