簡易檢索 / 詳目顯示

研究生: 王奕凱
Yi-Kai Wang
論文名稱: 應用機器人加工技術移除鑄造件殘料之變力量控制系統開發與實作
Development and Implementation of a RoboticMachining based Variable Cutting Force Control System for Removing Casting Scraps
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 陳世樂
Shyh-Leh Chen
劉孟昆
Meng-Kun Liu
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 119
中文關鍵詞: 機械人加工技術鑄件殘料加工變力量伺服控制切削力模型
外文關鍵詞: Robotic-machining, Casting scrap machining, Variable cutting force control, Cutting force model
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑄件殘料表面加工是目前機器人加工的一大主要應用,然而當鑄件殘料尺寸不同時其所需切削力亦是不同,若使用固定力量伺服控制進行加工則容易發生過切現象造成工件損壞。為此本研究開發一套安裝於固定平台的主動式變力量控制系統針對鑄件殘料毛邊去除進行安全且有效率的半精加工製程。首先當機械手臂所夾持之鑄件依照手臂教導員規劃的加工路徑向刀具進給時,系統會透過機械視覺偵測鑄件殘料資訊並根據切削力模型規劃所需加工力量命令,如此一來系統便能透過變力量伺服控制在刀具進給時移除不同尺寸的鑄件殘料。本研究以5052鋁合金實際加工過程獲得移除不同厚度殘料所需的切削力後,再以最小平方法識別三組線性切削剛性方程並以此作為切削力模型。本研究參考自行車前叉鑄件殘料實際輪廓與加工情境設計多組殘料造型的加工測試件進行變力量加工實驗。實驗結果顯示所開發之主動式變力量控制系統於加工「工件表面為平面」測試件時,可在工件不過切的情況下移除90%以上的殘料;至於加工「工件表面為斜面」的測試件時,則可能因機械手臂自身剛性不足及刀具進刀複雜動態影響而產生過切現象。


    Surface machining such as casting scrap removal is an important application for robotic-machining. Because the cutting force varies with the varying size of the machined scraps, it is very easy to cause over-cutting and failed machined workpieces if simply applying constant force servo control to perform scrap machining. To deal with this problem this study develops a variable cutting force control system to improve the safety and efficiency of a semi-finish machining process related to removing casting scraps. When the casting workpiece mounted on the robot manipulator feeds to the cutting tool system mounted on the ground, the scrap size will be measured using machine vision and the required cutting force reference command corresponding to the measured scrap size will be generated using a cutting force model. A variable force servo system which actuates the cutting tool is then implemented to remove casting scraps during the machining process. To verify the effectiveness of the proposed cutting force control system, a set of Aluminum 5052 workpieces whose scrap profiles are based on the casting parts of bicycle front forks are adopted in robotic machining experiments and the cutting force model is approximated as a piecewise linear function that relates the machining stiffness to the scrap thickness. Experimental results demonstrate that 90% total material removal volume percentage is achieved without over-cutting when removing the scraps on a flat plane. However, due to the flexible stiffness of the manipulator and complicated tool feeding dynamics over-cutting may be still occurring when removing the scraps on a slanted plane, which could be further investigated in the future for performance improvement.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 文獻回顧與本研究應用範圍 1.2.1 透過手臂力量控制(Through-the-arm force control)相關文獻探討 1.2.2 手臂周邊力量控制(Around-the-arm force control)相關文獻探討 1.2.3 應用於機械手臂之力量模型相關文獻探討 1.2.4 既有文獻綜合評比與本研究應用範圍 1.3 本文貢獻與架構 第二章 系統架構 2.1 系統實驗平台建置與運作流程 2.2 系統設計 2.2.1 切削單元 2.2.2 路徑補正單元 2.2.3 感測單元 2.2.4 系統原點復歸與過行程保護設計 2.3 實驗設備 2.3.1 個人電腦與軟體 2.3.2 資料擷取卡 2.3.3 編碼器與解碼卡 2.3.4 網路擷取卡 2.3.5 L298N直流馬達驅動模組 2.3.6 六軸機械手臂 第三章 系統模型推導與控制策略 3.1 系統模型建立 3.1.1 主動式變力量控制系統動態模型推導 3.1.2 切削力模型 3.2 殘料偵測演算法 3.3 系統控制策略 3.3.1 變力量控制策略 3.3.2 位置/變力量控制策略 第四章 切削力模型參數設計與規劃參考力量軌跡 4.1 切削力模型剛性曲線設計 4.1.1 實驗平台建置 4.1.2 切削參數設計 4.1.3 切削剛性系統識別 4.2 加工測試件設計 4.3 參考力量軌跡規劃 4.4 控制器參數設計 4.4.1 力量控制器參數設計 4.4.2 位置控制器參數設計 第五章 實驗結果與討論 5.1 材料體積移除率(Material Removal Volume Percentage) 5.2 實驗規劃 5.2.1 於工件夾持滑台進行殘料加工實驗規劃 5.2.2 於機械手臂進行殘料加工實驗規劃 5.3 於工件夾持滑台進行殘料加工實驗 5.3.1 平面底A加工測試件 5.3.2 平面底B加工測試件 5.3.3 斜面底加工測試件 5.3.4 於工件夾持滑台進行殘料加工實驗 – 總結 5.4 於機械手臂進行殘料加工實驗 5.4.1 位制/變力量控制策略 5.4.2 機械手臂位置控制 5.4.3 於機械手臂進行殘料加工實驗 – 總結 第六章 結論與未來目標 6.1 結論 6.2 未來目標

    [1]
    Serope Kalpakjian, Manufacturing, Engineering and Technology, Pearson Education, 2009.
    [2]
    台灣社會快速「老化」 老年人口占比逼近15%。檢自 https://news.housefun.com.tw/news/article/131703233227.html
    [3]
    謝其政/別怕辛苦!自己的3K產業自己救。檢自https://www.tvet3.info/salvage-3k-industries/
    [4]
    Why Die Casting? Retrieved from https://www.scicast.com/diecasting/whydiecasting.shtml
    [5]
    HOW FOUNDRIES PERFORM FLASH REMOVAL ON ALUMINUM OR ZINC CASTINGS? Retrieved from https://pacdiecast.com/die-cast-light-fixtures/how-foundries-perform-flash-removal-on-aluminum-or-zinc-castings/
    [6]
    Bruno Siciliano and Luigi Villani, Robot Force Control, Springer New York, 1999.
    [7]
    F. Nagata et al., “Orthogonal-type robot with a CAD/CAM-based position/force controller,” EEE Symposium on Computational Intelligence in Control and Automation, 2009, pp. 1-6.
    [8]
    Hui Zhang et al., “Machining with flexible manipulator: toward improving robotic machining performance,” EEE/ASME International Conference on Advanced Intelligent Mechatronics., 2005, pp. 1127-1132.
    [9]
    State of the art of robotic welding. Retrieved from https://www.metalworkingworldmagazine.com/state-of-the-art-of-robotic-welding/
    [10]
    Line Tracking for Robotic Pick and Place. Retrieved from https://medium.com/@gajani_vivekanandan/line-tracking-for-robotic-pick-and-place-4798f0f16fb1
    [11]
    Automobile Bumper Automatic 6 Axis Spray Painting Robot. Retrieved from https://www.powdercoatedmachine.com/sale-13804974-automobile-bumper-automatic-6-axis-spray-painting-robot.html
    [12]
    B. R. Shetty and M. H. Ang, “Active compliance control of a PUMA 560 robot,” IEEE International Conference on Robotics and Automation, 1996, pp. 3720-3725.
    [13]
    Erlbacher, E.A., “Force control basics,” Industrial Robot, 2000, pp. 20-29.
    [14]
    Raibert, M. H., and Craig, J. J. “Hybrid Position/Force Control of Manipulators.” ASME. J. Dyn. Sys., Meas., Control. June 1981, pp. 126–133.
    [15]
    H. Zhang, H. Chen, N. Xi, G. Zhang and J. He, “On-Line Path Generation for Robotic Deburring of Cast Aluminum Wheels, ” IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 2400-2405.
    [16]
    Li, Wei, et al., “Robotic Assembly for Irregular Shaped Peg-in-Hole with Partial Constraints.” Applied Sciences., Aug. 11, 2021, pp. 73-94.
    [17]
    Hogan, Neville. “Impedance Control: An Approach to Manipulation: Part I—Theory.” Journal of Dynamic Systems Measurement and Control-transactions of The Asme, 1985, pp. 1-7.
    [18]
    Hogan, Neville. “Impedance Control: An Approach to Manipulation: Part II—Implementation.” Journal of Dynamic Systems Measurement and Control-transactions of The Asme, 1985, pp. 8-16.
    [19]
    Hogan, Neville. “Impedance Control: An Approach to Manipulation: Part III—Application.” Journal of Dynamic Systems Measurement and Control-transactions of The Asme, 1985, pp. 17-24.
    [20]
    H. Kazerooni, “Automated robotic deburring using impedance control,” IEEE Control Systems Magazine, Feb. 1988, pp. 21-25.
    [21]
    H. Song, B. Kim and J. Song, “Tool path generation based on matching between teaching points and CAD model for robotic deburring,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2012, pp. 890-895.
    [22]
    Song, H.C., “Precision robotic deburring based on force control for arbitrarily shaped workpiece using CAD model matching.” Int. J. Precis. Eng. Manuf., 2013, pp. 85–91.
    [23]
    Xue X, Huang H, Zuo L and Wang N. “A Compliant Force Control Scheme for Industrial Robot Interactive Operation.” Front Neurorobot, Mar 2022.
    [24]
    W. Lu, H. Liu, X. Zhu, X. Wang, and B. Liang, “Variable stiffness force tracking impedance control using differential-less method,” Chinese Control And Decision Conference, 2017, pp. 4906-4911.
    [25]
    Huang, Han, et al., “Robotic grinding and polishing for turbine-vane overhaul. Journal of Materials Processing Technology.” 2002, pp. 140-145.
    [26]
    Chen, Y., and Lan, C., “An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations.” ASME. J. Mech. Des. March 2012.
    [27]
    Y. -L. Kuo, S. -Y. Huang and C. -C. Lan, “Sensorless Force Control of Automated Grinding/Deburring Using an Adjustable force regulation mechanism,” International Conference on Robotics and Automation, 2019, pp. 9489-9495.
    [28]
    A. Sharon, N. Hogan and D. E. Hardt, “High bandwidth force regulation and inertia reduction using a macro/micro manipulator system,” IEEE International Conference on Robotics and Automation, 1988, pp. 126-132.
    [29]
    X. Zhang, H. Chen, N. Yang, H. Lin and K. He, “A structure and control design of constant force polishing end actuator based on polishing robot,” IEEE International Conference on Information and Automation, 2017, pp. 764-768.
    [30]
    I. Mohsin, K. He, J. Cai, H. Chen and R. Du, “Robotic polishing with force controlled end effector and multi-step path planning,” IEEE International Conference on Information and Automation, 2017, pp. 344-348.
    [31]
    Active Contact Flange. Retrieved from https://www.ferrobotics.com/en/services/products/active-contact-flange/
    [32]
    J. Li et al., “A High-Bandwidth End-Effector With Active Force Control for Robotic Polishing,” IEEE Access, 2020, pp. 169122-169135.
    [33]
    Bone, Gary M., and Mohamed A. Elbestawi. “Active end effector control of a low precision robot in deburring.” Robotics and Computer-integrated Manufacturing, 1991, pp. 87-96.
    [34]
    Ma, Zheng, et al., “Design and control of an end-effector for industrial finishing applications.” Robotics and Computer-Integrated Manufacturing, 2018.
    [35]
    X. Xie and L. Sun, “Force control based robotic grinding system and application,” World Congress on Intelligent Control and Automation, 2016, pp. 2552-2555.
    [36]
    Nuno Mendes, Pedro Neto, “Indirect adaptive fuzzy control for industrial robots: A solution for contact applications,” Expert Systems with Applications, 2015, pp. 8929-8935.
    [37]
    X. -l. Wang, Y. Wang and Y. -n. Xue, “An Adaptive algorithm for robotic deburring based on impedance control,” IEEE International Symposium on Industrial Electronics, 2006, pp. 262-266.
    [38]
    Alexandr Klimchik. Enhanced stiffness modeling of serial and parallel manipulators for robotic-based processing of high performance materials. Robotics. Ecole Centrale de Nantes; Ecoledes Mines de Nantes, 2011. English.
    [39]
    K. -Y. Lin, C. -C. Chung and C. -C. Lan, “Improving the Dynamic Force Control of Series Elastic Actuation Using Motors of High Torque-to-Inertia Ratios,” IEEE Access, 2020, pp. 6968-6977.
    [40]
    P. Mustalahti and J. Mattila, “Impedance Control of Hydraulic Series Elastic Actuator with a Model-Based Control Design,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2020, pp. 966-971.
    [41]
    G. A. Pratt and M. M. Williamson, “Series elastic actuators,” IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, 1995, pp. 399-406.
    [42]
    鋁合金的加工切削特性,摘自: http://tw.tool-tool.com/news/201304/aluminum-alloy-characteristics/
    [43]
    治盛科技高效型鋁合金專用端銑刀AL3SE-ST-060。 摘自https://gtoptool.com/products_detail.php?hashid=MzQyNQ%3D%3D
    [44]
    碧威股份有限公司 各材質銑刀切削參考數據。 摘自: http://tw.tool-tool.com/news/201112/milling-cutting-data/
    [45]
    S. Kalpakjian and S. R. Schmid, Manufacturing Engineering and Technology,
    7th ed, Singapore: Pearson Education South Asia Pte Ltd., 2013.
    [46]
    線性滑軌-上銀科技。摘自:https://www.hiwin.tw/download/tech_doc/gw/Linear_Guideway-(C).pdf
    [47]
    上銀科技R8-2T3-FSI滾珠螺桿。 摘自: https://motioncontrolsystems.hiwin.us/item/miniature-ground-ballscrews/fsi-type-miniature-ground-ballscrews/r8-2t3-fsi-80-138-0-008
    [48]
    滾珠螺桿的特徵與類型。 摘自: https://tech.thk.com/ct/products/pdf/tc_b15_006.pdf
    [49]
    梅森直流馬達DCX22LGBKL 12V。 摘自: https://www.maxongroup.com.tw/maxon/view/product/motor/dcmotor/DCX/DCX22/DCX22L01GBKL484
    [50]
    梅森減速機 GPX22HP 150:1。 摘自: https://www.maxongroup.com.tw/maxon/view/product/gear/planetary/GPX/GPX22/GPX22-3-Stufig-HP/GPX22HPKLSL0150CPLW
    [51]
    台濠科技股份有限公司 線性規。摘自:http://www.carmar-tech.com/_i/assets/file/download/51b03dc880af36627b447d1b490ca145.pdf
    [52]
    ATI Axia-80 M20六軸力量感測器。摘自: https://www.ati-ia.com/products/ft/ft_models.aspx?id=Axia80-M20
    [53]
    LMI Gocator 2100系列線雷射輪廓掃描儀。摘自: https://www.apostar.com.tw/products/67db9cf8.php
    [54]
    ATX IMBA–H110A。 摘自:https://www.aaeon.com/en/p/atx-motherboards-imbah110a?dl=himanager&gclid=Cj0KCQiAvvKBBhCXARIsACTePW__hFvguBnd6fs51a6BgOUaGi%E2%80%A6
    [55]
    NI 6259 Specifications. 摘自: https://www.ni.com/docs/zh-CN/bundle/pci-pcie-pxi-pxie-usb-6259-specs/page/specs.html
    [56]
    Measurement Computing PCI-QUAD04. 摘自: https://www.mccdaq.com/pci-data-acquisition/PCI-QUAD04.aspx
    [57]
    DLINK DGE-530T. 摘自: https://www.dlink.com/en/products/dge-530t-gigabit-desktop-pci-adapter
    [58]
    L298N直流馬達控制模組。 摘自: https://www.amazon.eg/-/en/Bridge-Stepper-Motor-Controller-Module/dp/B091DB5DVN
    [59]
    Wiring & Driving the L298n H Bridge with 2 to 4 DC Motors. 摘自: http://www.14core.com/wiring-driving-the-l298n-h-bridge-on-2-to-4-dc-motors/
    [60]
    鎢鋼銑刀切削加工-逆銑(上銑法)與順銑(下銑法)。摘自: http://tw.tool-tool.com/news/201112/conventional-milling-and-climb-milling/
    [61]
    K. H. Lee, H. J. Lee, J. Lee, S. -H. Ji and J. C. Koo, “A simple method to estimate the impedance of the human hand for physical human-robot interaction,” International Conference on Ubiquitous Robots and Ambient Intelligence, 2017, pp. 152-154.

    無法下載圖示 全文公開日期 2027/08/08 (校內網路)
    全文公開日期 2027/08/08 (校外網路)
    全文公開日期 2027/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE