簡易檢索 / 詳目顯示

研究生: 葉品賢
Pin-Xian Ye
論文名稱: 選擇性雷射燒熔Ti-6Al-4V/Ti金屬複合材料之切削加工理論與實務
Machining of laser-melting Ti-6Al-4V/Ti composite alloy in theory and practice
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 蔡宏營
Hung-Yin Tsai
林原慶
Yuan-Ching Lin
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 110
中文關鍵詞: 雷射積層製造異質鈦合金微銑削最小切屑厚度尺寸效應力學分析模型時頻轉換分析統計計量分析表面完整性
外文關鍵詞: Selective laser melting, Heterogeneous Ti-6Al-4V, Micro milling, Minimum chip thickness, Size effect, Cutting force model, Time-frequency analysis, Statistical analysis, Surface integrity
相關次數: 點閱:403下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層製造(Additive Manufacture, AM)製程之優勢為用於生產複雜幾何之零件,減少加工程序進而降低生產成本。雖然如此,在雷射燒熔(melting)金屬粉末與固化成相(consolidation)過程中,熱效應產生積層間之非均性與非等向性,因此引起材料表面完整性與尺寸精度的變異。本研究探討之後加工製程(post processing)可用於雷射燒熔金屬構件,並建立以微銑削(micro milling)與刀具幾何互為關聯之切削力模型。模型中分析了進給率與刀尖半徑之關係,產生剪切與犁切之臨界條件與切屑形成之機制。實驗設計中,考慮最小切屑形成之厚度與進給率(5–15 μm/tooth),用以描述剪切、犁切與黏滯區之切削行為。並操作切削速度(30–80 m/min),用於調整剪應變率所產生的剪力集中效應。當切削測試進行於選擇性雷射燒熔區(Ti-6Al-4V)、過渡區(Ti-6Al-4V/CP01 Ti)與底材區(CP01 Ti)時,量測切削力、切削溫度、刀具磨耗與刀尖半徑幾何、表面粗糙度與輪廓形貌,討論物理機制並進行統計檢定與分析。實驗結果顯示,在雷射燒熔區裡,提高切削速度可以增加剪切作用,因而降低切削力與切削溫度。於過渡區,降低進給率可以減少切削力。於底材區,進給率與切削速度對切削溫度皆產生影響。當過濾、辨識並移除實驗數據之離群點後,可以建立分析模型,並得切削力之模型精度(~87%)。刀具磨耗與顯微組織,加工表面形貌與切削條件之關聯,皆與常規商用材料進行比對,討論其形成機制並詳加探究其原因。


    Additive manufacturing (AM) process has been prevalently used in prototyping and production of parts with complex geometry, for the advantages of shortening manufacturing procedures and thus reducing costs. Nonetheless, while components are produced by laser melting of metallic powders, mechanical performances altered due to the thermal induced effects, which led to inhomogeneous and anisotropic properties. Hence, post machining necessitates its importance for retaining satisfied surface integrity and dimensional accuracy. This study investigates the size effects, when machining of laser melting metallic components, in association with the established cutting force model and experimental work on micro milling. While the model analyzes the relationship between feed rate and tool edge radius, the critical conditions for shearing, ploughing and chip formation mechanism can be suggested and identified. In the design of experiments, the operated feed rates (5–15 μm/tooth) were to correlate with the cutting mechanisms in shearing and ploughing in the stagnation zone. Whereas the controlled cutting speeds (30–80 m/min) were used to explain the stress concentration effects and the associated shear strain rates. When the cutting tests are performed in the laser molten zone (Ti-6Al-4V), fusion zone (Ti-6Al-4V/CP01 Ti) and substrate (CP01 Ti), the objectives of cutting force, cutting temperature, tool wear and edge geometry are recorded and evaluated. Machined surface roughness and profile are statistically analyzed and reported. As a results, increasing cutting speed can reduce cutting forces and cutting temperatures in the laser molten zone. Whereas reducing feed rate can reduce cutting forces in the fusion zone. In the substrate, both the feed rate and cutting speed have significant effects on the cutting temperatures. In the fit analytical models, the accuracy of the cutting force can be obtained with appreciable precision level (R2 ~87%). The underlying mechanisms of the tool wear, machined surface topography and alterations in microstructures which are interacting with the cutting conditions, are all reviewed and discussed in detail.

    摘要 I Abstract II 致謝 IV 符號定義 V 目錄 VII 圖目錄 X 表目錄 XIII 第一章 研究介紹 1 第二章 文獻回顧 3 2.1 雷射積層製程之材料性質差異 3 2.2 雷射積層製程之加工精度比較 5 2.3 切削Ti-6Al-4V合金之刀具選用 6 2.4 雷射燒熔Ti-6Al-4V材料之切削條件 7 2.5 微切削行為與尺寸效應 8 2.6 最小切屑厚度之形成 9 2.7 時頻域轉換分析 11 第三章 研究方法 13 3.1 研究流程 13 3.2 微切削之邊界條件 14 3.3 切削動力幾何模型 19 第四章 實驗工作 24 4.1 實驗材料 24 4.1.1 金屬粉末燒熔 24 4.1.2 材料金相 25 4.1.3 材料機械性質 26 4.2 切削刀具 27 4.3 實驗設置 29 4.4 實驗設計 32 4.5 數據擷取 33 4.5.1 切削力量測 33 4.5.2 切削溫度量測 34 4.5.3 刀具磨耗量測 35 4.5.4 刀具幾何量測 36 4.5.5 表面形貌量測 37 4.6 統計檢定與分析 38 4.7 時頻域轉換與分析 38 第五章 實驗結果與討論 40 5.1 切削動力之分析 40 5.1.1 操作參數與切削動力之關係 40 5.1.2 切削動力模型驗證 40 5.1.3 切削動力時頻轉換與分析 49 5.2 切削溫度之分析 52 5.3 刀具磨耗與幾何分析 58 5.3.1 刀具前間隙面磨耗 58 5.3.2 刀具前間隙面磨耗形貌 63 5.3.3 刀尖半徑磨耗 64 5.4 材料表面完整性分析 67 5.4.1 加工表面粗糙度 67 5.4.2 承壓比 70 第六章 結論與未來展望 75 6.1 文獻回顧總結 75 6.2 研究結果總結 76 6.2.1 切削動力之分析 76 6.2.2 切削溫度之分析 77 6.2.3 刀具磨耗與幾何分析 78 6.2.4 材料表面完整性分析 78 6.3 未來展望 79 參考文獻 80 附錄一 研究著作與學術榮譽 91 附錄二 實驗CNC加工程式碼 93 附錄三 常規Ti-6Al-4V CNC加工程式碼 94

    [1] J.S. Cuellar, G. Smit, D. Plettenburg, A. Zadpoor, Additive manufacturing of non-assembly mechanisms, Additive Manufacturing, 21 (2018) 150-158.
    [2] W.S.W. Harun, N.S. Manam, M.S.I.N. Kamariah, S. Sharif, A.H. Zulkifly, I. Ahmad, H. Miura, A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications, Powder Technology, 331 (2018) 74-97.
    [3] W.S.W. Harun, M.S.I.N. Kamariah, N. Muhamad, S.A.C. Ghani, F. Ahmad, Z. Mohamed, A review of powder additive manufacturing processes for metallic biomaterials, Powder Technology, 327 (2018) 128-151.
    [4] F. Abe, K. Osakada, M. Shiomi, K. Uematsu, M. Matsumoto, The manufacturing of hard tools from metallic powders by selective laser melting, Journal of Materials Processing Technology, 111 (2001) 210-213.
    [5] F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, F.S. Silva, O. Carvalho, G. Miranda, Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting, Transactions of Nonferrous Metals Society of China, 27 (2017) 829-838.
    [6] A. Bordin, S. Bruschi, A. Ghiotti, P.F. Bariani, Analysis of tool wear in cryogenic machining of additive manufactured Ti6Al4V alloy, Wear, 328-329 (2015) 89-99.
    [7] J. Ju, Y. Zhou, K. Wang, Y. Liu, J. Li, M. Kang, J. Wang, Tribological investigation of additive manufacturing medical Ti6Al4V alloys against Al2O3 ceramic balls in artificial saliva, Journal of the Mechanical Behaviour of Biomedical Materials, 104 (2020) 103602.
    [8] M. Kahlin, H. Ansell, J.J. Moverare, Fatigue behaviour of additive manufactured Ti6Al4V, with as-built surfaces, exposed to variable amplitude loading, International Journal of Fatigue, 103 (2017) 353-362.
    [9] T. Becker, M. Beck, C. Scheffer, Microstructure and mechanical properties of direct metal laser sintered TI-6AL-4V, South African Journal of Industrial Engineering, 26 (2015) 1-10.
    [10] P. Mengucci, A. Gatto, E. Bassoli, L. Denti, F. Fiori, E. Girardin, P. Bastianoni, B. Rutkowski, A. Czyrska-Filemonowicz, G. Barucca, Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering, J Mech Behav Biomed Mater, 71 (2017) 1-9.
    [11] A.S. Patil, V.D. Hiwarkar, P.K. Verma, R.K. Khatirkar, Effect of TiB2 addition on the microstructure and wear resistance of Ti-6Al-4V alloy fabricated through direct metal laser sintering (DMLS), Journal of Alloys and Compounds, 777 (2019) 165-173.
    [12] N.A. Kistler, D.J. Corbin, A.R. Nassar, E.W. Reutzel, A.M. Beese, Effect of processing conditions on the microstructure, porosity, and mechanical properties of Ti-6Al-4V repair fabricated by directed energy deposition, Journal of Materials Processing Technology, 264 (2019) 172-181.
    [13] Y.R. Choi, S.D. Sun, Q. Liu, M. Brandt, M. Qian, Influence of deposition strategy on the microstructure and fatigue properties of laser metal deposited Ti-6Al-4V powder on Ti-6Al-4V substrate, International Journal of Fatigue, 130 (2020) 105236.
    [14] K. Zhang, X. Tian, M. Bermingham, J. Rao, Q. Jia, Y. Zhu, X. Wu, S. Cao, A. Huang, Effects of boron addition on microstructures and mechanical properties of Ti-6Al-4V manufactured by direct laser deposition, Materials & Design, 184 (2019) 108191.
    [15] Y. Zhai, D.A. Lados, E.J. Brown, G.N. Vigilante, Understanding the microstructure and mechanical properties of Ti-6Al-4V and Inconel 718 alloys manufactured by Laser Engineered Net Shaping, Additive Manufacturing, 27 (2019) 334-344.
    [16] A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta Biomater, 6 (2010) 1640-8.
    [17] Y. Zhai, H. Galarraga, D.A. Lados, Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM, Engineering Failure Analysis, 69 (2016) 3-14.
    [18] C. Kuo, P. Ye, J. Liu, Effects of Elemental Alloying on Surface Integrity in Joining of Composite Powders with Heterogeneous Titanium Substrates Using Selective Laser Melting, International Journal of Precision Engineering and Manufacturing-Green Technology, (2019).
    [19] Q. Liu, Y. Wang, H. Zheng, K. Tang, L. Ding, H. Li, S. Gong, Microstructure and mechanical properties of LMD–SLM hybrid forming Ti6Al4V alloy, Materials Science and Engineering: A, 660 (2016) 24-33.
    [20] R. Sabban, S. Bahl, K. Chatterjee, S. Suwas, Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness, Acta Materialia, 162 (2019) 239-254.
    [21] A. Hattal, T. Chauveau, M. Djemai, J.J. Fouchet, B. Bacroix, G. Dirras, Effect of nano-yttria stabilized zirconia addition on the microstructure and mechanical properties of Ti6Al4V parts manufactured by selective laser melting, Materials & Design, 180 (2019) 107909.
    [22] S.N.B. Oliaei, Y. Karpat, Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V, Journal of Materials Processing Technology, 235 (2016) 28-40.
    [23] G. Li, S. Yi, N. Li, W. Pan, C. Wen, S. Ding, Quantitative analysis of cooling and lubricating effects of graphene oxide nanofluids in machining titanium alloy Ti6Al4V, Journal of Materials Processing Technology, 271 (2019) 584-598.
    [24] S. Sartori, A. Ghiotti, S. Bruschi, Solid Lubricant-assisted Minimum Quantity Lubrication and Cooling strategies to improve Ti6Al4V machinability in finishing turning, Tribology International, 118 (2018) 287-294.
    [25] D.E. Cooper, M. Stanford, K.A. Kibble, G.J. Gibbons, Additive Manufacturing for product improvement at Red Bull Technology, Materials & Design, 41 (2012) 226-230.
    [26] H.H. Zhu, L. Lu, J.Y.H. Fuh, Development and characterisation of direct laser sintering Cu-based metal powder, Journal of Materials Processing Technology, 140 (2003) 314-317.
    [27] H. Masuo, Y. Tanaka, S. Morokoshi, H. Yagura, T. Uchida, Y. Yamamoto, Y. Murakami, Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing, International Journal of Fatigue, 117 (2018) 163-179.
    [28] B. Fotovvati, E. Asadi, Size effects on geometrical accuracy for additive manufacturing of Ti-6Al-4V ELI parts, The International Journal of Advanced Manufacturing Technology, 104 (2019) 2951-2959.
    [29] L.S. Bertol, W.K. Júnior, F.P.d. Silva, C. Aumund-Kopp, Medical design: Direct metal laser sintering of Ti–6Al–4V, Materials & Design, 31 (2010) 3982-3988.
    [30] M.N. Ahsan, A.J. Pinkerton, R.J. Moat, J. Shackleton, A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti–6Al–4V powders, Materials Science and Engineering: A, 528 (2011) 7648-7657.
    [31] M. Gharbi, P. Peyre, C. Gorny, M. Carin, S. Morville, P. Le Masson, D. Carron, R. Fabbro, Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4V alloy, Journal of Materials Processing Technology, 213 (2013) 791-800.
    [32] J.S. Keist, T.A. Palmer, Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition, Materials & Design, 106 (2016) 482-494.
    [33] J.C. Heigel, P. Michaleris, E.W. Reutzel, Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V, Additive Manufacturing, 5 (2015) 9-19.
    [34] J. Kummailil, C. Sammarco, D. Skinner, C.A. Brown, K. Rong, Effect of Select LENS™ Processing Parameters on the Deposition of Ti-6Al-4V, Journal of Manufacturing Processes, 7 (2005) 42-50.
    [35] A. Szafranska, A. Antolak-Dudka, P. Baranowski, P. Bogusz, D. Zasada, J. Malachowski, T. Czujko, Identification of Mechanical Properties for Titanium Alloy Ti-6Al-4V Produced Using LENS Technology, Materials (Basel), 12 (2019).
    [36] A. Fatemi, R. Molaei, S. Sharifimehr, N. Phan, N. Shamsaei, Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect, International Journal of Fatigue, 100 (2017) 347-366.
    [37] X. Wu, J. Mei, Near net shape manufacturing of components using direct laser fabrication technology, Journal of Materials Processing Technology, 135 (2003) 266-270.
    [38] A. Fatemi, R. Molaei, S. Sharifimehr, N. Shamsaei, N. Phan, Torsional fatigue behavior of wrought and additive manufactured Ti-6Al-4V by powder bed fusion including surface finish effect, International Journal of Fatigue, 99 (2017) 187-201.
    [39] L. Xiao, W. Song, Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments, International Journal of Impact Engineering, 111 (2018) 255-272.
    [40] S. Bagehorn, J. Wehr, H.J. Maier, Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts, International Journal of Fatigue, 102 (2017) 135-142.
    [41] W. Xie, M. Zheng, J. Wang, X. Li, The effect of build orientation on the microstructure and properties of selective laser melting Ti-6Al-4V for removable partial denture clasps, J Prosthet Dent, 123 (2020) 163-172.
    [42] F.H. Froes, Titanium: Physical Metallurgy, Processing, and Applications, A S M International, 2015.
    [43] Y. Long, J. Zeng, D. Yu, S. Wu, Microstructure of TiAlN and CrAlN coatings and cutting performance of coated silicon nitride inserts in cast iron turning, Ceramics International, 40 (2014) 9889-9894.
    [44] L. Wang, G. Zhang, R.J.K. Wood, S.C. Wang, Q. Xue, Fabrication of CrAlN nanocomposite films with high hardness and excellent anti-wear performance for gear application, Surface and Coatings Technology, 204 (2010) 3517-3524.
    [45] H.C. Barshilia, N. Selvakumar, B. Deepthi, K.S. Rajam, A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings, Surface and Coatings Technology, 201 (2006) 2193-2201.
    [46] K.D. Bouzakis, N. Michailidis, S. Gerardis, G. Katirtzoglou, E. Lili, M. Pappa, M. Brizuela, A. Garcia-Luis, R. Cremer, Correlation of the impact resistance of variously doped CrAlN PVD coatings with their cutting performance in milling aerospace alloys, Surface and Coatings Technology, 203 (2008) 781-785.
    [47] M. Brizuela, A. Garcia-Luis, I. Braceras, J.I. Oñate, J.C. Sánchez-López, D. Martínez-Martínez, C. López-Cartes, A. Fernández, Magnetron sputtering of Cr(Al)N coatings: Mechanical and tribological study, Surface and Coatings Technology, 200 (2005) 192-197.
    [48] B. Tlili, N. Mustapha, C. Nouveau, Y. Benlatreche, G. Guillemot, M. Lambertin, Correlation between thermal properties and aluminum fractions in CrAlN layers deposited by PVD technique, Vacuum, 84 (2010) 1067-1074.
    [49] L. Chen, Y. Du, S.Q. Wang, J. Li, A comparative research on physical and mechanical properties of (Ti, Al)N and (Cr, Al)N PVD coatings with high Al content, International Journal of Refractory Metals and Hard Materials, 25 (2007) 400-404.
    [50] W. Liu, Q. Chu, J. Zeng, R. He, H. Wu, Z. Wu, S. Wu, PVD-CrAlN and TiAlN coated Si 3 N 4 ceramic cutting tools -1. Microstructure, turning performance and wear mechanism, Ceramics International, 43 (2017) 8999-9004.
    [51] W. Liu, Q. Chu, J. Zeng, R. He, H. Wu, Z. Wu, S. Wu, PVD-CrAlN and TiAlN coated Si 3 N 4 ceramic cutting inserts-2. High speed face milling performance and wear mechanism study, Ceramics International, 43 (2017) 9488-9492.
    [52] F. Yıldız, A.F. Yetim, A. Alsaran, A. Çelik, İ. Kaymaz, İ. Efeoğlu, Plain and fretting fatigue behavior of Ti6Al4V alloy coated with TiAlN thin film, Tribology International, 66 (2013) 307-314.
    [53] P. Yi, L. Peng, J. Huang, Multilayered TiAlN films on Ti6Al4V alloy for biomedical applications by closed field unbalanced magnetron sputter ion plating process, Mater Sci Eng C Mater Biol Appl, 59 (2016) 669-676.
    [54] G. Hao, Z. Liu, Thermal contact resistance enhancement with aluminum oxide layer generated on TiAlN-coated tool and its effect on cutting performance for H13 hardened steel, Surface and Coatings Technology, 385 (2020) 125436.
    [55] S.K. Mishra, S. Ghosh, S. Aravindan, Performance of laser processed carbide tools for machining of Ti6Al4V alloys: A combined study on experimental and finite element analysis, Precision Engineering, 56 (2019) 370-385.
    [56] W. Tillmann, D. Grisales, D. Stangier, I. Ben Jebara, H. Kang, Influence of the etching processes on the adhesion of TiAlN coatings deposited by DCMS, HiPIMS and hybrid techniques on heat treated AISI H11, Surface and Coatings Technology, 378 (2019) 125075.
    [57] G. Le Coz, M. Fischer, R. Piquard, A. D’Acunto, P. Laheurte, D. Dudzinski, Micro Cutting of Ti-6Al-4V Parts Produced by SLM Process, Procedia CIRP, 58 (2017) 228-232.
    [58] S. Milton, A. Morandeau, F. Chalon, R. Leroy, Influence of Finish Machining on the Surface Integrity of Ti6Al4V Produced by Selective Laser Melting, Procedia CIRP, 45 (2016) 127-130.
    [59] S. Bruschi, R. Bertolini, A. Bordin, F. Medea, A. Ghiotti, Influence of the machining parameters and cooling strategies on the wear behavior of wrought and additive manufactured Ti6Al4V for biomedical applications, Tribology International, 102 (2016) 133-142.
    [60] G. Rotella, S. Imbrogno, S. Candamano, D. Umbrello, Surface integrity of machined additively manufactured Ti alloys, Journal of Materials Processing Technology, 259 (2018) 180-185.
    [61] H. Zhang, J. Dang, W. Ming, X. Xu, M. Chen, Q. An, Cutting responses of additive manufactured Ti6Al4V with solid ceramic tool under dry high-speed milling processes, Ceramics International, 46 (2020) 14536-14547.
    [62] S. Sartori, A. Bordin, A. Ghiotti, S. Bruschi, Analysis of the Surface Integrity in Cryogenic Turning of Ti6Al4V Produced by Direct Melting Laser Sintering, Procedia CIRP, 45 (2016) 123-126.
    [63] O. Oyelola, P. Crawforth, R. M’Saoubi, A.T. Clare, On the machinability of directed energy deposited Ti6Al4V, Additive Manufacturing, 19 (2018) 39-50.
    [64] O. Oyelola, P. Crawforth, R. M'Saoubi, A.T. Clare, Machining of Additively Manufactured Parts: Implications for Surface Integrity, Procedia CIRP, 45 (2016) 119-122.
    [65] O. Oyelola, A. Jackson-Crisp, P. Crawforth, D.M. Pieris, R.J. Smith, R. M’Saoubi, A.T. Clare, Machining of directed energy deposited Ti6Al4V using adaptive control, Journal of Manufacturing Processes, 54 (2020) 240-250.
    [66] G. Bonaiti, P. Parenti, M. Annoni, S. Kapoor, Micro-milling Machinability of DED Additive Titanium Ti-6Al-4V, Procedia Manufacturing, 10 (2017) 497-509.
    [67] Y. Bai, A. Chaudhari, H. Wang, Investigation on the microstructure and machinability of ASTM A131 steel manufactured by directed energy deposition, Journal of Materials Processing Technology, 276 (2020) 116410.
    [68] O. Oyelola, P. Crawforth, R. M’Saoubi, A.T. Clare, Machining of functionally graded Ti6Al4V/ WC produced by directed energy deposition, Additive Manufacturing, 24 (2018) 20-29.
    [69] M. Dumas, F. Cabanettes, R. Kaminski, F. Valiorgue, E. Picot, F. Lefebvre, C. Grosjean, J. Rech, Influence of the finish cutting operations on the fatigue performance of Ti-6Al-4V parts produced by Selective Laser Melting, Procedia CIRP, 71 (2018) 429-434.
    [70] A. Polishetty, M. Shunmugavel, M. Goldberg, G. Littlefair, R.K. Singh, Cutting Force and Surface Finish Analysis of Machining Additive Manufactured Titanium Alloy Ti-6Al-4V, Procedia Manufacturing, 7 (2017) 284-289.
    [71] K. Cheng, D. Huo, Micro-Cutting: Fundamentals and Applications, Wiley, 2013.
    [72] L.L. Alhadeff, M.B. Marshall, D.T. Curtis, T. Slatter, Protocol for tool wear measurement in micro-milling, Wear, 420-421 (2019) 54-67.
    [73] V. K, J. Mathew, Wear behavior of TiAlN coated WC tool during micro end milling of Ti-6Al-4V and analysis of surface roughness, Wear, 424-425 (2019) 165-182.
    [74] N. Chen, M. Chen, C. Wu, X. Pei, Cutting surface quality analysis in micro ball end-milling of KDP crystal considering size effect and minimum undeformed chip thickness, Precision Engineering, 50 (2017) 410-420.
    [75] N. Chen, M. Chen, C. Wu, X. Pei, J. Qian, D. Reynaerts, Research in minimum undeformed chip thickness and size effect in micro end-milling of potassium dihydrogen phosphate crystal, International Journal of Mechanical Sciences, 134 (2017) 387-398.
    [76] M.A. Rahman, M. Rahman, A.S. Kumar, Chip perforation and ‘burnishing–like’ finishing of Al alloy in precision machining, Precision Engineering, 50 (2017) 393-409.
    [77] M. Malekian, S.S. Park, M.B.G. Jun, Modeling of dynamic micro-milling cutting forces, International Journal of Machine Tools and Manufacture, 49 (2009) 586-598.
    [78] K.S. Woon, M. Rahman, K.S. Neo, K. Liu, The effect of tool edge radius on the contact phenomenon of tool-based micromachining, International Journal of Machine Tools and Manufacture, 48 (2008) 1395-1407.
    [79] M. Wan, D.-Y. Wen, Y.-C. Ma, W.-H. Zhang, On material separation and cutting force prediction in micro milling through involving the effect of dead metal zone, International Journal of Machine Tools and Manufacture, 146 (2019) 103452.
    [80] M. Malekian, M.G. Mostofa, S.S. Park, M.B.G. Jun, Modeling of minimum uncut chip thickness in micro machining of aluminum, Journal of Materials Processing Technology, 212 (2012) 553-559.
    [81] N. Fang, Tool-chip friction in machining with a large negative rake angle tool, Wear, 258 (2005) 890-897.
    [82] P. Bari, M. Law, P. Wahi, Improved chip thickness model for serrated end milling, CIRP Journal of Manufacturing Science and Technology, 25 (2019) 36-49.
    [83] G. Sutter, G. List, Very high speed cutting of Ti–6Al–4V titanium alloy change in morphology and mechanism of chip formation, International Journal of Machine Tools and Manufacture, 66 (2013) 37-43.
    [84] J.M. Griffin, F. Diaz, E. Geerling, M. Clasing, V. Ponce, C. Taylor, S. Turner, E.A. Michael, F. Patricio Mena, L. Bronfman, Control of deviations and prediction of surface roughness from micro machining of THz waveguides using acoustic emission signals, Mechanical Systems and Signal Processing, 85 (2017) 1020-1034.
    [85] M. Lamraoui, M. Thomas, M. El Badaoui, Cyclostationarity approach for monitoring chatter and tool wear in high speed milling, Mechanical Systems and Signal Processing, 44 (2014) 177-198.
    [86] V. Pandiyan, T. Tjahjowidodo, Use of Acoustic Emissions to detect change in contact mechanisms caused by tool wear in abrasive belt grinding process, Wear, 436-437 (2019) 203047.
    [87] J. Song, T. Liu, H. Shi, S. Yan, Z. Liao, Y. Liu, W. Liu, Z. Peng, Time-frequency analysis of the tribological behaviors of Ti6Al4V alloy under a dry sliding condition, Journal of Alloys and Compounds, 724 (2017) 752-762.
    [88] L. Zhou, F.Y. Peng, R. Yan, P.F. Yao, C.C. Yang, B. Li, Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects, International Journal of Machine Tools and Manufacture, 97 (2015) 29-41.

    無法下載圖示 全文公開日期 2025/08/04 (校內網路)
    全文公開日期 2025/08/04 (校外網路)
    全文公開日期 2025/08/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE