簡易檢索 / 詳目顯示

研究生: 林峻宇
Chun-Yu Lin
論文名稱: 拋光墊表面微突起接觸面積對銅薄膜晶圓化學機械拋光之影響研究
Study on Influence of Contact Area of Pad-Asperity in Chemical Mechanical Polishing of Copper Blanket Film Wafers
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 趙崇禮
Choung-Lii Chao
劉顯光
Hsien-Kuang Liu
莊程媐
Cheng-Hsi Chuang
何羽健
Yu-Chien Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 199
中文關鍵詞: 化學機械拋光 (CMP)軟拋墊接觸面積銅薄膜晶圓電腦斷層掃描
外文關鍵詞: Chemical Mechanical Polishing (CMP), Soft Polishing Pad, Contact Area, Copper Blanket Film Wafer, μ-CT
相關次數: 點閱:213下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的為下壓力對於軟拋墊表面微突起接觸面積的影響與材料移除率預測模型應用於銅薄膜化學機械拋光製程。實際方法使用X-ray電腦斷層掃描儀進行軟拋墊的微觀形貌掃描,再透過三維分析軟體組建軟拋墊的微觀形貌模型,並結合有限元素分析軟體來評估 CMP 製程中軟拋墊與晶圓之間的接觸面積,以此對於材料移除率預測模型中實際接觸面積的參數進行修正。本研究分以三階段進行,先以9片40×40 mm^2 銅薄膜晶圓進行九組參數的CMP實驗,並透過CMP實驗結果與Preston’s Equation和材料移除率預測模型所分別計算出的結果進行驗證,得出Preston’s Equation的誤差量會落在1.42%~7.56%之間,而預測模型的誤差量會落在2.94%~5.23% 之間。再以三組下壓力分別進行30片銅薄膜晶圓CMP實驗中,透過拋光墊性能指標與晶圓MRR相關性分析得到下壓力為1 psi時,軟拋墊主要工作區域為 R_pk,當下壓力上升至2 psi與3 psi時,軟拋墊主要工作區域從 R_pk 轉變成 R_vk,此實驗結果與藉由模擬的壓縮高度所推測出的工作區域是相符合的。最後以9片8吋銅薄膜晶圓進行九組參數的CMP實驗,透過CMP實驗結果與材料移除率預測模型所計算出的結果進行驗證,誤差量會落在1.40%~3.73%之間。


This study aims to investigate down pressure on soft polishing pad asperity and develop a prediction model of material removal rate (MRR) in chemical mechanical polishing (CMP) of copper blanket film wafer. Surface topography model of soft polishing pad is performed with X-ray micro computed tomography (μ-CT) scan combined with finite element method simulation to evaluate the contact area between pad asperities and wafer during CMP process. The modifying parameters of estimated contact area can be used in the prediction model of MRR. The study has been conducted in three phases. First, MRR can be obtained from CMP experiments of nine pieces of 40×40 mm^2 (copper blanket film wafers. The prediction of MRR is verified by results of CMP experiments and results show that the error of Preston's Equation is within 1.42%~7.56% and the error of prediction model can achieve within 2.94%~5.23%. Secondly, the correlations between pad performance and MRR are discussed through CMP experiments of 30 pieces of copper blanket coupon wafers (40×40 mm^2) in three kinds of down pressure. Results show that when the down pressure is 1 psi, the main contact area is Rpk. Down pressure changes to 2 psi and 3 psi, and the main contact area is changed from Rpk to Rvk. Result of experiment is consistent with the working area inferred from results of simulated compression height. Finally, the MRR of 8-inch copper blanket obtained from CMP experiments of nine sets of parameters are compared with MRR calculated by prediction model. Results show that the error of the prediction model is within 1.40%~3.73%.

目錄 摘要…… II Abstract......III 致謝…… IV 目錄…… 1 圖目錄… 6 表目錄… 15 符號表… 18 第一章 緒論......23 1.1 研究背景......23 1.2 研究目的與方法......26 1.3 論文架構......28 第二章 文獻回顧......30 2.1 拋光墊之拋光性能指標分析......30 2.2 X-ray 電腦斷層掃描方法......40 2.3 表面微突起特徵分析......45 2.4 文獻回顧總結......53 第三章 拋光墊性能分析與模擬Asperity壓縮高度......54 3.1 拋光墊性能分析......55 3.1.1 拋光墊基本機械性質......55 3.1.2 拋光墊表面形貌與量測方式......59 3.1.3 電子顯微鏡(SEM)觀察拋光墊微結構......61 3.1.4 拋光墊物性總結......64 3.2 承載面積比(Bearing Area Ratio)分析拋光墊......66 3.3 軟拋墊模型建置......69 3.3.1 Micro-CT 掃描......69 3.3.2 FJ_H800 3D模型建置......71 3.4 FJ_H800軟拋墊奈米壓痕實驗......74 3.4.1 FJ_H800切片實驗......74 3.4.2 奈米壓痕實驗原理與假設......77 3.4.3 FJ_H800奈米壓痕實驗結果......80 3.4.4 奈米壓痕實驗總結......89 3.5 拋光墊Asperity 對於CMP製程的影響......90 3.5.1 下壓力對Asperity壓縮深度的影響......92 3.5.2 Asperity壓縮高度對接觸面積的影響......93 第四章 Cu-CMP材料移除率預測模型......98 4.1 磨粒對於銅薄膜晶圓的移除率......98 4.2 化學溶解對銅薄膜晶圓材料移除率的影響......104 第五章 CMP實驗規劃與設備......107 5.1 CMP實驗設備......107 5.1.1 拋光機......107 5.1.2 彩色共軛焦感測器......111 5.1.3 整合式修整搖臂......113 5.2 PML實驗量測設備......114 5.3 實驗耗材......116 5.3.1 軟拋墊......116 5.3.2 測試用晶圓......117 5.3.3 拋光液......118 5.3.4 毛刷......120 第六章 40×40 〖mm〗^2銅薄膜晶圓CMP實驗結果......124 6.1 9片40×40 mm^2銅薄膜晶圓CMP(實驗A)......124 6.1.1 Preston’s Equation對MRR之計算結果......128 6.1.2 40×40 mm^2材料預測模型對MRR之計算結果......131 6.1.3 實驗A結果與討論.......134 6.2 下壓力對於FJ_H800工作區域變化之驗證(實驗B)......135 6.2.1 30次銅薄膜晶圓CMP在1 psi下(實驗B-1)......139 6.2.1.1 銅薄膜晶圓分析於1 psi之結果......139 6.2.1.2 拋光墊分析於1 psi之結果......141 6.2.1.3 晶圓品質與拋光墊性能指標相關性分析於1 psi之結果......142 6.2.2 30次銅薄膜晶圓CMP在2 psi下(實驗B-2)......146 6.2.2.1 銅薄膜晶圓分析於2 psi之結果......146 6.2.2.2 拋光墊分析於2 psi之結果......148 6.2.2.3 晶圓品質與拋光墊性能指標相關性分析於2 psi之結果......149 6.2.3 30次銅薄膜晶圓CMP在3 psi下(實驗B-3)......153 6.2.3.1 銅薄膜晶圓分析於3 psi下之結果......153 6.2.3.2 拋光墊分析於3 psi下結果......155 6.2.3.3 晶圓品質與拋光墊性能指標相關性分析於3 psi之結果......156 6.2.4 實驗B綜合結果與討論......160 第七章 8吋銅薄膜晶圓CMP實驗結果(實驗C)......161 7.1.1 製程參數對8吋銅薄膜晶圓品質之影響......164 7.1.2 8吋材料預測模型對MRR之計算結果......168 7.1.3 實驗C結果與討論......171 第八章 結論與建議......172 8.1 結論......172 8.2 建議......174 參考文獻......175 附錄A 拋光墊類型介紹[51]......180 附錄B 實驗量測設備......182 附錄C 在1 psi下之晶圓表面粗糙度S_a(nm)......186 附錄D 在2 psi下之晶圓表面粗糙度S_a(nm)......187 附錄E 在3 psi下之晶圓表面粗糙度S_a(nm)......188 附錄F 8吋銅薄膜晶圓品質分析......189 附錄F-1 8吋銅薄膜晶圓移除率(MRR)......189 附錄F-2 8吋銅薄膜晶圓表面粗糙度(S_a)與非均勻性......191

參考文獻
[1] KRISHNAN, M.; LOFARO, M. F. Copper chemical mechanical planarization (Cu CMP) challenges in 22 nm back-end-of-line (BEOL) and beyond. In: Advances in Chemical Mechanical Planarization (CMP). Woodhead Publishing, 2016. p. 27-46.
[2] LAWING, A. S. Pad conditioning and textural effects in CMP. In: Proc. CMPMIC. 2005. p. 33-33.
[3] KIM, Sanha; SAKA, Nannaji; CHUN, Jung-Hoon. The role of pad topography in chemical-mechanical polishing. IEEE Transactions on Semiconductor Manufacturing, 2014, 27.3: 431-442.
[4] MCGRATH, John; DAVIS, Chris. Polishing pad surface characterization in chemical mechanical planarization. Journal of Materials Processing Technology, 2004, 153: 666-673.
[5] 王柏凱, "雷射共軛焦三維表面形貌量測儀開發應用於拋光墊之碎形維度合承載比分析," 碩士論文, 機械工程系, 國立臺灣科技大學, 台北市, 2013.
[6] 劉長靈, "模糊混沌原理方法在工程上之應用(C-L Liou, Engineering Application for theories and Methods on Fuzzy and Chaos)," , 中興工程研究發展基金會, 2003.
[7] 溫禪儒, "單晶矽與藍寶石晶圓化學機械平坦化之拋光墊有效壽命指標分析研究," 碩士論文, 機械工程系, 國立臺灣科技大學, 台北市, 2014.
[8] 蔡明城, "開發線上監控量測方法與系統應用於拋光墊性能水準分析之研究," 碩士論文, 機械工程系, 國立臺灣科技大學, 台北市, 2016.
[9] 王詩堯, "化學機械拋光之拋光墊性能於淺溝槽隔離製程之分析研究," 碩士論文, 國立臺灣科技大學, 機械工程學系, 2018.
[10] HONG, Seokjun, et al. A numerical study on slurry flow with CMP pad grooves. Microelectronic Engineering, 2020, 234: 111437.
[11] 廖秉鋐, "化學機械拋光之拋光墊性能於淺溝槽隔離製程之分析研究," 碩士論文, 國立臺灣科技大學, 機械工程學系, 2021.
[12] NOWAK, Z., et al. Mechanical properties of the ceramic open-cell foams of variable cell sizes. Archives of Metallurgy and Materials, 2015, 60.
[13] ZHANG, Jinhua, et al. The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm. Modeling and Simulation in Materials Science and Engineering, 2018, 26.4: 045008.
[14] HORNY, Dominik, et al. Numerical and experimental characterization of elastic properties of a novel, highly homogeneous interpenetrating metal-ceramic composite. Advanced Engineering Materials, 2020, 22.7: 1901556.
[15] KOSMELA, Paulina, et al. Microstructure–Property Relationship of Polyurethane Foams Modified with Baltic Sea Biomass: Microcomputed Tomography vs. Scanning Electron Microscopy. Materials, 2020, 13.24: 5734.
[16] BONING, Duane; FAN, Wei. Characterization and Modeling of Pad Asperity Response in CMP. MRS Online Proceedings Library (OPL), 2010, 1249.
[17] VASILEV, Boris, et al. A method for characterizing the pad surface texture and modeling its impact on the planarization in CMP. Microelectronic Engineering, 2013, 104: 48-57.
[18] JEONG, Hobin, et al. Prediction of real contact area from microtopography on CMP pad. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2012, 6.1: 113-120.
[19] KIM, Sanha; SAKA, Nannaji; CHUN, Jung-Hoon. The effect of pad-asperity curvature on material removal rate in chemical-mechanical polishing. Procedia Cirp, 2014, 14: 42-47.
[20] 李人傑, "運用動態量測系統進行拋光墊之修整模型建立與線上量測分析研究 ," 博士論文, 國立臺灣科技大學, 機械工程學系, 2021.
[21] LEE, Woo-Sun, et al. An optimization of tungsten plug chemical mechanical polishing (CMP) using different consumables. Journal of Materials Science: Materials in Electronics, 2001, 12.1: 63-68.
[22] TSENG, Wei-Tsu; WANG, Ying-Lang; NIU, James. Microstructure-related resistivity change after chemical–mechanical polish of Al and W thin films. Thin Solid Films, 2000, 370.1-2: 96-100.
[23] OISHI, Toshiyuki, et al. Isolation edge effect depending on gate length of MOSFETs with various isolation structures. IEEE Transactions on Electron Devices, 2000, 47.4: 822-827.
[24] PARK, Boumyoung, et al. Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry. journal of materials processing technology, 2008, 203.1-3: 287-292.
[25] 蕭百成, "銅化學機械平坦化之軟拋光墊性能指標分析研究," 碩士論文, 國立臺灣科技大學, 台北市, 2019.
[26] MCGRATH, John; DAVIS, Chris. Polishing pad surface characterization in chemical mechanical planarization. Journal of Materials Processing Technology, 2004, 153: 666-673.
[27] MULDOWNEY, Gregory P.; JAMES, David B. Characterization of CMP pad surface texture and pad-wafer contact. MRS Online Proceedings Library (OPL), 2004, 816.
[28] LEE, Sunghoon; KIM, Hyoungjae; DORNFELD, David. Development of a CMP pad with controlled micro features for improved performance. In: ISSM 2005, IEEE International Symposium on Semiconductor Manufacturing, IEEE, 2005. p. 173-176.
[29] 薛慶堂, "化學機械拋光之拋光墊性能分析與平坦化加工研究," 碩士論文, 國立臺灣科技大學, 台北市, 2011.
[30] SHERRINGTON, I.; MERCER, S. The use of topography‐based parameters for the assessment and prediction of surface wear. Tribotest, 2000, 7.1: 1-11.
[31] PAWLUS, Pawel, et al. Material ratio curve as information on the state of surface topography—A review. Precision Engineering, 2020, 65: 240-258.
[32] FRÖHLICH, F.; GRAU, P_; GRELLMANN, W. Performance and analysis of recording microhardness tests. Physica status solidi (a), 1977, 42.1: 79-89.
[33] BERKOVICH, E. S. Three-faceted diamond pyramid for studying microhardness by indentation. Zavodskaya Laboratoria, 1950, 13.3: 345-347.
[34] HARDIMAN, Mark; VAUGHAN, Ted Joseph; MCCARTHY, Conor T. A review of key developments and pertinent issues in nanoindentation testing of fiber reinforced plastic microstructures. Composite structures, 2017, 180: 782-798.
[35] OLIVER, Warren C.; PHARR, Georges M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of materials research, 2004, 19.1: 3-20.
[36] TSAI, Kuang-Yue; CHIN, Tsung-Shune; SHIEH, Han-Ping D. Effect of grain curvature on nano-indentation measurements of thin films. Japanese journal of applied physics, 2004, 43.9R: 6268.
[37] LUO, Jianfeng; DORNFELD, David A. Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE transactions on semiconductor manufacturing, 2001, 14.2: 112-133.
[38] JIANG, Jiaren; STACK, M. M. Modelling sliding wear: from dry to wet environments. Wear, 2006, 261.9: 954-965.
[39] LU, B. T.; LUO, J. L.; MA, H. Y. A theoretical model on electrochemical response of passivated metals to solid particle impingement. Journal of The Electrochemical Society, 2007, 154.3: C159.
[40] LI, Jing, et al. Modeling the chemical-mechanical synergy during copper CMP. Journal of The Electrochemical Society, 2010, 158.2: H197.
[41] GOLDBERG, Jay R.; GILBERT, Jeremy L. Electrochemical response of CoCrMo to high‐speed fracture of its metal oxide using an electrochemical scratch test method. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 1997, 37.3: 421-431.
[42] YIM, R., et al. Chemical/mechanical balance management through pad microstructure in CMP. Microelectronic Engineering, 2018, 195: 36-40.
[43] PRESTON, F. W. The theory and design of plate glass polishing machines. Journal of Glass Technology, 1927, 11.44: 214-256.
[44] STEWART, Mike. A new approach to the use of bearing area curve. Dearborn, MI: Society of Manufacturing Engineers, 1990.

無法下載圖示 全文公開日期 2024/09/19 (校內網路)
全文公開日期 2027/09/19 (校外網路)
全文公開日期 2027/09/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE