簡易檢索 / 詳目顯示

研究生: 吳宗儒
CHUNG-JU WU
論文名稱: 研磨液體積濃度變化對無花紋研磨墊化學機械拋光矽晶圓研磨移除深度之理論模擬模式及迴歸模式分析
Analysis of Theoretical Simulation Model and Regression Model of Abrasive Removal Depth of Silicon Wafer Dipped in Slurry at Different Volume Concentrations After Chemical Mechanical Polishing with Pattern-free Polishing Pad
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 王國雄
Kuo-Shong Wang
許覺良
Jue-Liang Xu
傅光華
Kuang-Hua Fuh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 215
中文關鍵詞: 研磨移除深度迴歸模式體積濃度無花紋研磨墊化學機械拋光
外文關鍵詞: abrasive removal depth, regression model, volume concentrations, pattern-free polishing pad, chemical mechanical polishing (CMP)
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先建立室溫下不同體積濃度之無花紋研磨墊化學機械拋光矽晶圓的研磨移除深度理論模擬模式。我們將矽晶圓浸泡在常溫下不同體積濃度研磨液後,接著進行原子力顯微鏡實驗,計算得出浸泡室溫不同體積濃度研磨液的矽晶圓比下壓能值,再將這些比下壓能值代入創新建立的不同體積濃度之無花紋研磨墊化學機械拋光矽晶圓的每分鐘研磨移除深度理論模擬模式。進而模擬計算出室溫下不同研磨液體積濃度、不同下壓力及不同轉速所得矽晶圓每分鐘研磨移除深度之理論模擬值。
    本研究再利用所得之矽晶圓每分鐘研磨移除深度之理論模擬值進行迴歸分析,得到固定體積濃度之每分鐘研磨移除深度的迴歸公式MRR=k_p P^α V^β公式後,我們發現在不同研磨液體積濃度下只有k_p改變,α與β值固定不變。所以我們進一步用一個考慮不同研磨液體積濃度的二次迴歸公式k_p (x),其中x為研磨液體積濃度,代替固定研磨液體積濃度的迴歸公式,這樣我們可以只用一個迴歸公式便可計算出不同研磨液體積濃度的每分鐘研磨移除深度。最後迴歸出不同體積濃度MRR=k_p (x)P^α V^β迴歸公式。
    本研究用研磨移除深度的理論模式模擬計算出研磨液體積濃度20%、30%、40%、50%,不同下壓力1psi、1.5psi、2psi、2.5psi、3psi與不同轉速20rpm、30rpm、40rpm、50rpm、60rpm的每分鐘研磨移除深度的理論模擬之MRR值。本研究再利用S_vc=理論模擬得出的每分鐘研磨移除深度-k_p P^α V^β的觀念,計算出固定研磨液體積濃度、不同下壓力與不同轉速的每分鐘研磨移除深度的理論模擬值與由迴歸公式得出之每分鐘研磨移除深度的差異值S_vc。我們將差異值S_vc以固定下壓力的條件下進行二次線性迴歸,得到MRR=k_p P^α V^β+S_vc的迴歸公式。並且比較後發現理論模擬所得的研磨移除深度和由MRR=k_p (x)P^α V^β迴歸公式得出之MRR值其差異值在加上S_vc補償迴歸值後影響效果很小,所以使用上我們可以忽略S_vc補償公式,以MRR=k_p (x)P^α V^β公式即可求得所需之每分鐘研磨移除深度。
    本研究先進行下面6個不同體積濃度,不同下壓力及不同轉速的CMP實驗 (1) 20%、3psi,60rpm ; (2) 30%、3psi,60rpm ; (3) 50%、3psi,60rpm ; (4) 40%、2psi、40rpm ; (5) 50%、2psi、40rpm及(6) 50%、1psi、60rpm,再將室溫下不同體積濃度研磨液之無花紋研磨墊化學機械拋光的每分鐘研磨移除深度之理論模擬結果與上述6個化學機械拋光的實驗結果之每分鐘研磨移除深度做比較。計算出上述6個實驗的室溫下不同體積濃度研磨液拋光矽晶圓的個別每分鐘研磨移除深度理論模擬值與實驗之平均每分鐘研磨移除深度值,再計算其平均差異比例值,本文求出平均差異比例值約為4.2%。本文將所有理論模擬值在減去平均差異比例值4.2%後得到接近實驗之平均每分鐘研磨移除深度值,進一步將其迴歸分析固定體積濃度的MRR_e=〖k_p〗_e P^(α_e ) V^(β_e )迴歸公式。由迴歸所得之公式的〖k_p〗_e、α_e 和β_e 之值,可發現在不同研磨液體積濃度下,只有〖k_p〗_e改變,α_e 與β_e 值固定不變。所以我們進一步迴歸分析不同體積濃度x的MRR_e=〖k_p〗_e (x)P^(α_e ) V^(β_e )迴歸公式。由於如同上述由理論模擬值所迴歸出的S_vc值影響研磨移除深度值不大,故由〖S_vc〗_e補償迴歸公式對於公式的計算結果影響也不大。所以我們發現MRR_e=〖k_p〗_e (x)P^(α_e ) V^(β_e )為最方便計算每分鐘研磨移除深度實驗值的較佳迴歸公式。最後本研究另外進行不在前面做差異比例值分析實驗案例中的新的不同體積濃度研磨液的無花紋研磨墊化學機械拋光實驗,將新的實驗所得每分鐘研磨移除深度值與迴歸公式MRR_e=〖k_p〗_e (x)P^(α_e ) V^(β_e )計算所得之每分鐘研磨移除深度值進行比較後,發現其差異很小,由此可驗證迴歸公式MRR_e=〖k_p〗_e (x)P^(α_e ) V^(β_e )為合理且實用。


    In the beginning the paper establishes a theoretical simulation model of abrasive removal depth of silicon wafer dipped in slurry at different volume concentrations at room temperature after chemical mechanical polishing (CMP) of pattern-free polishing pad. After we have dipped silicon wafer in slurry at different volume concentrations at room temperature, we make atomic force microscopy experiment, and calculate the specific down force energy (SDFE) values of silicon wafer dipped in slurry at different volume concentrations at room temperature. Then the paper substitutes these SDFE values in an innovatively established theoretical simulation model of abrasive removal depth of silicon wafer dipped in slurry at different volume concentrations after chemical mechanical polishing (CMP) of pattern-free polishing pad. Furthermore, through simulation, the paper calculates the theoretical simulation values of the obtained abrasive removal depths per minute of silicon wafer dipped in slurry at different volume concentrations at room temperature, under different downward forces and at different rotational speeds.
    The paper subsequently uses the obtained theoretical simulation values of the abrasive removal depths per minute of silicon wafer to perform regression analysis. After achieving a regression equation of abrasive removal depth per minute with slurry at a fixed volume concentration: MRR = kpPV, we find that when slurry is at different volume concentrations, only kp is changed, but with  and  values remaining unchanged. Therefore, we further use a secondary regression equation kp(x) that considers different volume concentrations of slurry, with x being the volume concentrations of slurry. This secondary regression equation replaces the regression equation with a fixed volume concentration of slurry. In this way, using only one regression equation, we can calculate the abrasive removal depth per minute with slurry at different volume concentrations. Finally, a regression equation with slurry at different volume concentrations can be obtained: MRR = kp (x)PV.
    The paper uses a theoretical model of abrasive removal depth for simulation, and calculates the abrasive removal depth per minute value obtained by theoretical simulation when slurry is at volume concentrations of 20%, 30%, 40% and 50%, under different downward forces of 1psi, 1.5psi, 2psi, 2.5psi and 3psi, and at different rotational speeds of 20rpm, 30rpm, 40rpm, 50rpm and 60rpm. After that, using the concept that Svc = the abrasive removal depth per minute obtained by theoretical simulation  kpPV, the paper calculates the difference value Svc between the theoretical simulation values with slurry at a fixed volume concentrations, under different downward forces and at different rotational speeds, and abrasive removal depth per minute obtained from the regression equation.Using the difference value Svc under the condition of a fixed downward force, we perform secondary linear regression, and then achieves a regression equation: MRR = kpPV + Svc . After comparison is made, we find that when the difference value between the abrasive removal depth per minute obtained from the theoretical simulation and the MRR value obtained from the regression equation MRR = kp (x)PV, adds the compensatory regression value Svc , the effect of influence is very small. Therefore, in times of use, we can ignore the compensatory equation with Svc . Simply using the equation MRR = kp (x)PV, we can just find the required abrasive removal depth per minute.
    The paper firstly conducts CMP experiments using the following 6 different volume concentrations of slurry, different downward forces and different rotational speeds: (1) 20%, 3psi, 60rpm; (2) 30%, 3psi, 60rpm; (3) 50%, 3psi, 60rpm; (4) 40%, 2psi, 40rpm; (5) 50%, 2psi, 40rpm; and (6) 50%, 1psi, 60rpm. Then the paper compares the theoretical simulation results of abrasive removal depths per minute with slurry at different volume concentrations after CMP of pattern-free polishing pad, with the results of abrasive removal depths per minute obtained from the above 6 CMP experiments. Through calculation, the paper obtains the average abrasive removal depth value per minute between the theoretical simulation value and experimental value of individual abrasive removal depth of silicon wafer per minute with slurry at different volume concentrations at room temperature as mentioned in the above 6 experiments, and then calculates the average difference ratio value. The average difference ratio value calculated by the paper is around 4.2%. After the paper deducts each of the theoretical simulation values by the average difference ratio value of 4.2%, an average abrasive removal depth value per minute being close to the experimental result is obtained. Furthermore, the paper use these close to experimental result obtained to make regression analysis for slurry at a fixed volume concentration, and achieves a regression equation: MRR = kpePeVe. From the values of kpe, _e and _e in the equation obtained from regression, we can find that when slurry is at different volume concentrations, only kpe is changed, but with _e and _e values remaining fixed and unchanged. Therefore, we further makes regression analysis for slurry at different volume concentrations x, and achieves a regression equation: MRRe = kpe(x)PeVe. Since it is understood from the above that the Svc value regressed from the theoretical simulation value does not influence the abrasive removal depth value per minute much, the compensatory regression equation with Svce also will not greatly influence the calculation result of the equation. Therefore, we find that MRRe = kpe(x)PeVe is the most convenient and a better regression equation for calculation of the experimental value of abrasive removal depth per minute. Finally, the paper conducts new CMP experiments of pattern-free polishing pad with slurry at different volume concentrations, referring to the experimental cases without making analysis of difference ratio value as done above. After the abrasive removal depth values per minute obtained from the new experiments are compared with the abrasive removal depth values per minute obtained from calculation by the regression equation MRRe = kpe(x)PeVe, the paper finds that the difference in between is very small. As seen from here, it is proved that the regression equation MRRe = kpe (x)PeVe is feasible and practical.

    摘要 I Abstract IV 誌謝 VIII 目錄 IX 圖目錄 XIII 表目錄 XVI 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 4 1.2.1 原子顯微鏡奈米加工之文獻 4 1.2.2 化學機械拋光研磨移除率相關文獻 6 1.3 本文架構 9 第二章 實驗設備與實驗原理 11 2.1 實驗設備 11 2.1.1 PM-5拋光機 11 2.1.2 研磨墊 14 2.1.3 研磨液 15 2.1.4 多模態原子力顯微鏡D3100 16 2.2 實驗原理 18 2.2.1 化學機械拋光實驗方法 18 2.2.2 不同體積濃度比下壓能理論模型 20 第三章 化學機械拋光之無花紋研磨墊研磨矽晶圓之研磨移除深度理論模擬模式 23 3.1 研磨墊粗度峯與晶圓接觸之接觸面積計算方法 23 3.2 計算矽晶圓單一元素之研磨移除深度理論方法 28 3.3 計算無花紋研磨墊化學機械拋光矽晶圓之研磨移除理論公式 32 第四章 迴歸分析理論及應用 35 4.1 迴歸分析理論 35 4.1.1 最小平方法之矩陣表示法 35 4.1.2 迴歸分析指標 36 4.1.3 有關MRR=k_p P^α V^β之迴歸模型 39 4.1.4 二次迴歸分析 40 4.2 迴歸分析應用 41 4.2.1 固定研磨液體積濃度之MRR=k_p P^α V^β迴歸公式 41 4.2.2 不同研磨液體積濃度之MRR=k_p 〖(x)P〗^α V^β迴歸公式 42 4.2.3不同研磨液體積濃度之S_vc補償迴歸公式 44 4.2.4 理論模擬結果與實驗結果之差異比例分析和迴歸公式 45 第五章 無花紋研磨墊化學機械拋光矽晶圓之模擬結果和實驗結果及相關迴歸分析結果與討論 48 5.1 無花紋研磨墊化學機械拋光矽晶圓之理論模式模擬結果 48 5.1.1 研磨液體積濃度20%理論模式模擬結果 49 5.1.2 研磨液體積濃度30%理論模式模擬結果 51 5.1.3 研磨液體積濃度40%理論模式模擬結果 53 5.1.4 研磨液體積濃度50%理論模式模擬結果 55 5.1.5 不同研磨液體積濃度理論模式之每分鐘研磨移除深度模擬結果分析 57 5.2 矽晶圓化學機械拋光模擬結果之迴歸分析 60 5.2.1 MRR=k_p P^α V^β迴歸結果 61 5.2.2 MRR=k_p 〖(x)P〗^α V^β迴歸結果 72 5.2.3 MRR=k_p P^α V^β+S_vc迴歸結果 84 5.2.4 MRR=k_p (x)P^α V^β+S_vc迴歸結果 97 5.2.5 綜合結果分析 111 5.3 矽晶圓化學機械拋光實驗結果及理論模擬結果之差異比例分析 113 5.3.1 體積濃度20%實驗值及理論模擬值差異比例分析 115 5.3.2 體積濃度30%實驗值及理論模擬值差異比例分析 117 5.3.3 體積濃度40%實驗值及理論模擬值差異比例分析 119 5.3.4 體積濃度50%實驗值及理論模擬值差異比例分析 121 5.3.5 平均差異比例分析 125 5.4 理論模擬值受平均差異比例修正之迴歸結果 128 5.4.1 修正後的〖MRR〗_e=〖k_p〗_e P^(α_e ) V^(β_e )迴歸結果 131 5.4.2 修正後的〖MRR〗_e=〖k_p〗_e (x)P^(α_e ) V^(β_e )迴歸結果 142 5.4.3 修正後的〖MRR〗_e=〖k_p〗_e P^(α_e ) V^(β_e )+〖S_vc〗_e迴歸結果 154 5.4.4 修正後的〖MRR〗_e=〖k_p〗_e 〖(x)P〗^(α_e ) V^(β_e )+〖S_vc〗_e迴歸結果 167 5.4.5 修正後的綜合結果分析及實驗驗證 181 第六章 結論 184 參考文獻 187

    [1]. Binning, G., Quate, C. F. and Gerber, C., “Atomic Force Microscope,” Physical Review Letters, Vol.56, No.9, pp. 930-933 (1986).
    [2]. Nanjo H., Nony L., Yoneya, M. and Aime J. P., “Simulation of Section Curve by Phase Constant Dynamic Mode Atomic Force Microscopy in Non-Contact Situation,” Applied Surface Science, Vol.210, No.5, pp. 49-53 (2003).
    [3]. Lübben, J. F. and Johannsmann D., “Nanoscale High-Frequency Contact Mechanics using an AFM Tip and a Quartz Crystal Resonator,” Langmuir, Vol.20, No.9, pp. 3698-3703 (2004).
    [4]. Tseng, A. A., Jou, S., Notargiacomo, A. and Chen, T. P., “Recent Developments in Tip-Based Nanofabrication and its Roadmap,” Journal of Nanoscience& Nanotechnology, Vol. 8, No. 5, pp.2167–2186 (2008).
    [5]. Schumacher, H. W., Keyser, U. F. and Zeitler, U., “Controlled Mechanical AFM Machining of Two-Dimensional Electron Systems: Fabrication of a Single-Electron Transistor,” Physica E: Low-dimensional Systems and Nanostructures, Vol. 6, pp. 860-863 (2000).
    [6]. Fang, T. H., Weng, C. I. and Chang, J. G., “Machining Characteriza tion of Nano-Lithography Process by using Atomic Force Microscopy,” Nanotechnology, Vol. 11, pp. 181-187 (2000).
    [7]. Wang, Z. Q., Jiao, N. D., Tung, S. and Dong, Z. L., “Research on the Atomic Force Microscopy-Based Fabrication of Nanochannels on Silicon Oxide Surfaces,” Chinese Science Bulletin, Vol. 55, No. 30, pp. 3466-3471 (2010).
    [8]. Tseng, A. A., “A Comparison Study of Scratch and Wear Properties using Atomic Force Microscopy,” Applied Surface Science, Vol. 256, No. 13, pp. 4246- 4252 (2010).
    [9]. Yan, Y. D., Sun, T., Liang, Y. C. and Dong, S., “Investigation on AFM Based Micro/Nano CNC Machining System,” International Journal of Machine Tools and Manufacture, Vol.47, No. 11, pp.1651-1659 (2007).
    [10]. Lu, C., Mai, Y. W., Tam, P. L. and Shen, Y. G., “Nanoindentation-Induced Elastic-Plastic Transition and Size Effect in Α-Al2O3 (0001),” Philosophical Magazine Letters, Vol. 87, pp.409-415 (2007).
    [11]. Preston, F. W., “The Theory and Design of Plate Glass Polishing Machines,” Journal of the Society of Glass Technology, Vol. 11, pp.214-247 (1927).
    [12]. Cook, L. M., “Chemical Process in Glass Polishing,” Journal of Non- Crystalline Solids,Vol.120, pp.152-171 (1990).
    [13]. Yu, T. K., Yu, C. C. and Orlowski, M., “A Statistical Polishing Pad Model for Chemical Mechanical Polishing,” Proceedings of IEEE Int. Electron Devices Meeting, pp.865-868(1993).
    [14]. Yu, T. K., Yu, C. C. and Orlowski, M., “Combined Asperity Contact and Fluid Flow Model for Chemical Mechanical Polishing,” Proceedings of International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits: NUPAD V, pp.29-34, (1994).
    [15]. Liu, C. W, Dai, B. T., Tseng, W. T. and Yeh, C. F., “Modeling of the Wear Mechanism during Chemical-Mechanical Polishing,” Journal of Electrochemical Society, Vol.143, pp.716-721 (1996).
    [16]. Chekina, O. G. and Keer, L. M., “Wear-Contact Problems and Modeling of Chemical-Mechanical Polishing,” Journal of Electrochemical Society, Vol. 145, pp.2100-2106 (1998).
    [17]. Xie, Y. and Bhushan, B., “Effects of Particle Size, Polishing Pad and Contact Pressure in Free Abrasive Polishing,” Wear, Vol.200, pp.281-295 (1996).
    [18]. Jiang, J., Sheng, F. and Ren, F., “Modeling of Two-body Abrasive Wear under Mutliple Contact Condition,” Wear, Vol. 217, pp.35-45 (1998).
    [19]. Jongwon, S., Cyriaque, P. S., Kim, A. T., Tichy, J. A., and Cale, T. S., “Multiscale Material Removal Modeling of Chemical Mechanical Polishing,” Wear, Vol. 254, pp.307-320(2003).
    [20]. Lin, Z. C. and Chen, C. C., “Method for Analyzing Effective Polishing Frequency and Times for Chemical Mechanical Planarization Polishing Wafer with Different Polishing Pad Profiles,” Journal of the Chinese Society of Mechanical Engineers, Vol.26, No.6, pp.671-676(2005).
    [21]. Lin, Z. C., Huang, W. S. and Tsai, J. S., “A Study of Material Removal Amount of Sapphire Wafer in Application Chemical Mechanical Polishing with Different Polishing Pads,” Mechanical Science and Technology, Vol.26, No.8, pp.2353-2364 (2012).
    [22]. Kim, H. and Jeong, H., “Effect of process conditions on uniformity of velocity and wear distance of pad and wafer during chemical mechanical planarization,” Journal of Electronic Material, Vol.33, pp.53-60(2004).
    [23]. Lin, Z.C., Wang, R.Y. and Jhang, Z.W., “Establishing a theoretical model for abrasive removal depth of silicon wafer chemical mechanical polishing by integrating a polishing times analytical model and specific down force energy theory” Int J Adv Manuf Technol, Vol. 95, pp.4671–4683 (2018)
    [24]. Lin, Z.C. and Hsu, Y.C., “A Calculating Method for the Fewest Cutting Passes on Sapphire Substrate at a Certain Depth using Specific Downward force Energy with an AFM Probe”, Journal of Materials Processing Technology, Vol. 212, pp.2321–2331 (2012).
    [25]. Zhao, Y., Maietta, D. M. and Chang, L., “An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow,” ASME Journal of Tribology , Vol. 122, No.1, pp.86–93(2000).
    [26]. Greenwood, J. A. and Williamson, J. B. P., “Contact of Nominally Flat Surfaces,”Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 295, No. 1442, pp.300-319 (1966).
    [27]. Qina, K., Moudgilb, B. and Park, C.W., “A chemical mechanical polishing model incorporating both the chemical and mechanical effects,” Thin Solid Films, Vol. 446, pp.277–286(2004).
    [28]. Johnson, K.L., Contact Mechanics, Cambridge University Press, Cambridge, (1985).
    [29]. Yu, T., Yu, C. and Orlowski, M., “A statistical polishing pad model for chemical-mechanical polishing,” Proceeings of the 1993 International Electron Devices Meetings, IEEE, Washington DC, pp.865-868(1993).
    [30]. Zhao, Y. and Chang, L., “A Micro-Contact and Wear Model for Chemical–Mechanical Polishing of Silicon Wafers,” Wear, Vol. 252, pp.220–226 (2002).
    [31]. Steigerwald, J.M., Murarka, S.P. and Gutmann, R.J., “Chemical Mechanical Planarization of Microelectronic Materials,” John Wiley and Sons, New York (1997).
    [32]. Yu, T., Yu, C. and Orlowski, M., “Proceedings of the 1993 International Electron Devices Meetings,” IEEE, Washington DC, pp.35 (1993).
    [33]. El-Kareh, B., “Fundamentals of Semiconductor Processing Technologies, ” Kluwer Academic Publishers, Boston(1995).
    [34]. Samprit, C., “Regression Analysis by Example,” Wiley, Vol. 4(2007).
    [35]. 林真真,「迴歸分析」,華泰書局出版,八十二年七月
    [36]. 方世榮,「統計學導論」,華泰書局出版,八十七年四月
    [37]. 黎正中,唐麗英,「實驗設計與分析」,高立圖書出版,一百零四年九月
    [38]. 黃韋舜,「藍寶石晶圓之化學機械拋光實驗與分析」,國立台灣科技大學,九十八年七月

    無法下載圖示 全文公開日期 2025/08/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE