簡易檢索 / 詳目顯示

研究生: 黃國維
Huang Kuo-Wei
論文名稱: 原子力量測於化學機械拋光之磨料作用力分析研究
Analysis on Interaction Force of Abrasive Grits in CMP by AFM
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 李碩仁
Shuo-Ren Li
洪興林
Xing-Ling Hong
周賢鎧
Shyan-Kay Jou
傅尉恩
Wei-En Fu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 164
中文關鍵詞: 化學機械拋光原子力顯微鏡材料移除機制奈米作用力磨料加工
外文關鍵詞: CMP, AFM, material removal mechanism, nano-interaction force, abrasive machining
相關次數: 點閱:206下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體元件製程應用上,化學機械拋光(Chemical Mechanical Polishing, CMP)為其重要製程之一,它透過研磨墊、漿粒、晶圓三者間彼此交互作用,使晶圓達到平坦化之效果以利後續製程所需。當元件線寬逐漸縮小(45 nm以下)且未來晶圓直徑亦大幅提升(450 mm, 18 in.)之情況下、後續製程對於晶圓表面平坦度及表面缺陷之嚴苛要求,皆對CMP製程能力將面臨極大考驗。本研究透過原子力量測(Atomic Force Microscope, AFM)探討CMP製程中磨料和工件間彼此相互作用力之情形,以了解在CMP製程中磨料對於工件之移除機制以及製程中作用力理論模型。藉由建構CMP製程的作用力理論模型以及CMP製程移除機制,再透過AFM針尖上之800 nm SiO2顆粒刮削操作,進行單顆磨料作用力分析以及刮削後溝槽幾何模擬分析晶圓CMP加工過程作用力及材料移除之情形,最後和Cu-CMP製程實驗兩者相互比對,進而建立了解CMP製程磨料對工件之材料移除機制。從刮削模擬及Cu-CMP製程結果發現有無鈍化層生成對於刮削溝槽具有明顯差異,且鈍化層對於銅薄膜具有保護作用使刮傷明顯減少,研究成果未來可應用於低應力Cu-CMP之製程發展及參數設定。


    The chemical mechanical planarization / polishing (CMP) process is an important process fabrication of the semiconductor devices. It can achieve the flattening effects of wafer or film on wafer by the interaction within pad, abrasive grits and film on wafer. The CMP process faces great challenges when the line width of device is smaller than 45 nm and the wafer size is larger than 450 nm (18 in.) in the near future. The surface flatness and surface defects of wafer have stringent requirements for such development. This study is to investigate the interaction force model within pad, abrasive and wafer to understand the material removal mechanism of the abrasive grits to the workpiece and then to verify by Cu- CMP experiments. First, the theoretical model of interaction force is developed based on the removal mechanism in the CMP process, and then an atomic force microscope (AFM) scratch operation is used to analyze the interaction force and the geometry of scratched grooves to simulate the interaction force between single abrasive and Cu film in the Cu-CMP process. Finally calculated Cu-CMP experiment results are compared with the results of AFM tests to establish the material removal rate of abrasive to Cu film in the CMP process. From the simulation and Cu-CMP experiment results, the existence of passivation layer has obvious significance for AFM grooving effects. Moreover, the passivation layer has protective effect to reduce the scratches on the Cu-film by AFM tip with SiO2 grit. Future study can focus on the model development of low-stress Cu-CMP process.

    摘要 I Abstract II 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1研究背景 1 1.2研究目的與方法 6 1.3 論文架構 8 第二章 文獻回顧 10 2.1 CMP相關文獻 10 2.1.1 微觀接觸力學理論 10 2.1.2 製程參數對於材料移除率之影響 19 2.1.3 拋光墊、磨料及工件間相互作用影響 28 2.2 AFM相關文獻 38 2.2.1 AFM力量量測 38 2.2.2 AFM探針力量常數(Force constant)校正 41 2.2.3 AFM模擬CMP製程之應用 47 2.3 文獻回顧小結 54 第三章 AFM模擬CMP作用力分析 56 3.1 AFM探針力學模型 56 3.1.1 探針懸臂樑作用力模型[13] 56 3.1.2 AFM探針力量常數校正 61 3.1.3 AFM探針與工件間作用力模型 63 3.2 AFM模擬CMP製程移除機制 65 3.2.1 AFM模擬拋光墊、磨料、工件表面作用力分析 65 3.2.2 加工後表面形貌性質評估及單一磨料移除率評估 67 3.2.3 CMP有效磨料數之材料移除率評估[5] 68 第四章 實驗規劃與設備 72 4.1 實驗規劃 72 4.2 實驗設備 78 4.2.1 拋光機 78 4.2.2 原子力顯微鏡 (Atomic force microscope, AFM) 78 4.2.3 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 78 4.2.4 四點探針 (4-Point probe) 79 4.3 實驗耗材 82 4.3.1 氧化矽球狀探針 82 4.3.2 銅薄膜晶圓 82 4.3.3 拋光液 82 4.3.4 拋光墊 83 第五章 實驗結果與討論 86 5.1 AFM刮削模擬結果與討論 (I) 86 5.1.1 探針力量常數校正比較 (I-A) 86 5.1.2 AFM刮削溝槽形貌分析 (I-B) 90 5.1.3 AFM 刮削作用力分析 (I-C) 93 5.1.4 AFM刮削探針磨耗情形 (I-D) 102 5.2 Cu-CMP製程實驗結果與討論 (II) 107 5.2.1 銅薄膜移除率比較 (II-A) 107 5.2.2 銅薄膜表面形貌及粗糙度 (II-B) 110 第六章 結論與建議 114 6.1 結論 114 6.2未來建議 116 參考文獻 119 附錄 127 附錄A Veeco DI-3100原子力顯微鏡規格表 127 附錄B 氧化矽球型探針SEM影像量測 128 附錄C AFM刮削溝槽形貌 130 附錄D 側向力(切線力)與溝槽形貌變化 138 附錄E 不同介質下氧化矽探針對銅薄膜晶圓之力量曲線 146 附錄G 漿料動電位極化曲線 150 附錄H Cu-CMP 有效磨料材料移除率程式估算 151 附錄I Cu-CMP後銅薄膜晶圓表面輪廓 153 附錄J Cu-CMP後表面形貌 156 附錄K 濕式奈米接觸力之AFM量測 160 作者簡介 164

    [1] S. D. S. Ampere A. Tseng, M. F. Luo, C. C. Kuo "Atom, Molecule, and Nanocluster Manipulations for Nanostructure Fabrication Using Scanning Probe Microscopy," NANOFABRICATION Fundamentals and Applications, (2008)
    [2] S. J. Ampere A. Tseng, Andrea Notargiacomo, and T. P. Chen, "Recent Developments in Tip-Based Nanofabrication and Its Roadmap," Journal of Nanoscience and Nanotechnology, Vol.8 (2008)
    [3] C.-C. A. C. a. J.-R. Chen, "Nanopattern Fabrication by Tip Plowing Technology on 55 nm Grating with Stitching Image Method," Journal of Nanoscience and Nanotechnology, Vol.10 (2010)
    [4] C. Baur and et al., "Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring," Nanotechnology, Vol.9 (1998)
    [5] 許厲生, "矽晶圓薄化與平坦化加工研究 (Research on silicon wafers thinning and planarization )," 國立台灣科技大學機械工程系博士論文, (2007)
    [6] C. Jin, S. Lin and J. T. Wetzel, "Evaluation of ultra-low-k dielectric materials for advanced interconnects," J. Electron. Mater., Vol.30 (2001)
    [7] K. Vagelis, "Scanning Probe Microscopy: Instrumentation and Applications on Thin Films and Magnetic Multilayers," Journal of Nanoscience and Nanotechnology, Vol.9 (2009)
    [8] H. Hertz, "On the contact of elastic solids," J. Reine Angew. Math., Vol.92 (1881)
    [9] B. V. Derjaguin, V. M. Muller and Y. P. Toporov, "Effect of contact deformations on the adhesion of particles," Journal of Colloid and Interface Science, Vol.53 (1975)
    [10] K. L. Johnson, "A note on the adhesion of elastic solids," British Journal of Applied Physics, Vol.9 (1958)
    [11] K. L. Johnson, K. Kendall and A. D. Roberts, "Surface Energy and the Contact of Elastic Solids," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol.324 (1971)
    [12] R. J. Burnham N. A. and Colton, "Force Microscopy," Scanning tunneling microscopy and spectroscopy: theory, techniques, and applications, (1993)
    [13] B. Bhushan, "Handbook of micro/nano tribology " CRC-Press, (1999)
    [14] F. W. Preston, "The Theory and Design of Plate Glass Polishing Machines," J. Soc. Glass Technology, Vol.11 (1927)
    [15] W. T. Tseng and Y. L. Wang, "Re-examination of Pressure and Speed Dependences of Removal Rate during Chemical-Mechanical Polishing Processes," Journal of The Electrochemical Society, Vol.144 (1997)
    [16] W. T. Tseng, J. H. Chin and L. C. Kang, "A Comparative Study on the Roles of Velocity in the Material Removal Rate during Chemical Mechanical Polishing," Journal of The Electrochemical Society, Vol.146 (1999)
    [17] C. Zhou, L. Shan, J. Robert Hight, S. H. Ng and S. Danyluk, "Fluid pressure and its effects on chemical mechanical polishing," Wear, Vol.253 (2002)
    [18] L. M. Cook, "Chemical processes in glass polishing," Journal of Non-Crystalline Solids, Vol.120 (1990)
    [19] C. W. Liu, B. T. Dai, W. T. Tseng and C. F. Yeh, "Modeling of the Wear Mechanism during Chemical-Mechanical Polishing," Journal of The Electrochemical Society, Vol.143 (1996)
    [20] L. Jianfeng and D. A. Dornfeld, "Optimization of CMP from the Viewpoint of Consumable Effects," Journal of The Electrochemical Society, Vol.150 (2003)
    [21] L. Jianfeng and D. A. Dornfeld, "Material removal regions in chemical mechanical planarization for submicron integrated circuit fabrication: coupling effects of slurry chemicals, abrasive size distribution,and wafer-pad contact area," Semiconductor Manufacturing, IEEE Transactions on, Vol.16 (2003)
    [22] L. Jianfeng and D. A. Dornfeld, "Material removal mechanism in chemical mechanical polishing: theory and modeling," Semiconductor Manufacturing, IEEE Transactions on, Vol.14 (2001)
    [23] Y.-R. Jeng and P.-Y. Huang, "Impact of Abrasive Particles on the Material Removal Rate in CMP," Electrochemical and Solid-State Letters, Vol.7 (2004)
    [24] Y. R. Jeng and P. Y. Huang, "A Material Removal Rate Model Considering Interfacial Micro-Contact Wear Behavior for Chemical Mechanical Polishing," Journal of Tribology, Vol.127 (2005)
    [25] T.-R. Lin, "An analytical model of the material removal rate between elastic and elastic-plastic deformation for a polishing process," The International Journal of Advanced Manufacturing Technology, Vol.32 (2007)
    [26] W. Cailing and et al., "Effects of the reciprocating parameters of the carrier on material removal rate and non-uniformity in CMP," Journal of Semiconductors, Vol.31 (2010)
    [27] K. H. Park, H. J. Kim, O. M. Chang and H. D. Jeong, "Effects of pad properties on material removal in chemical mechanical polishing," Journal of Materials Processing Technology, Vol.187-188 (2007)
    [28] Y. Tat-Kwan, C. C. Yu and M. Orlowski, "A statistical polishing pad model for chemical-mechanical polishing," Electron Devices Meeting, 1993. IEDM '93. Technical Digest., International, (1993)
    [29] Y. Tat-Kwan, C. Yu and M. Orlowski, "Combined asperity contact and fluid flow model for chemical-mechanical polishing," Numerical Modeling of Processes and Devices for Integrated Circuits, 1994. NUPAD V., International Workshop on, (1994)
    [30] W. Li, D. W. Shin, M. Tomozawa and S. P. Murarka, "The effect of the polishing pad treatments on the chemical-mechanical polishing of SiO2 films," Thin Solid Films, Vol.270 (1995)
    [31] F. Zhang and A. Busnaina, "The Role of Particle Adhesion and Surface Deformation in Chemical Mechanical Polishing Processes," Electrochemical and Solid-State Letters, Vol.1 (1998)
    [32] U. Mahajan, M. Bielmann and R. K. Singh, "In Situ Lateral Force Technique for Dynamic Surface Roughness Measurements during Chemical Mechanical Polishing," Electrochemical and Solid-State Letters, Vol.2 (1999)
    [33] J. Tichy, J. A. Levert, L. Shan and S. Danyluk, "Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing," Journal of The Electrochemical Society, Vol.146 (1999)
    [34] W. Choi, J. Abiade, S.-M. Lee and R. K. Singh, "Effects of Slurry Particles on Silicon Dioxide CMP," Journal of The Electrochemical Society, Vol.151 (2004)
    [35] T. L. Horng, "Modeling and simulation of material removal in planarization process," The International Journal of Advanced Manufacturing Technology, Vol.37 (2008)
    [36] H. Lee, S. Joo and H. Jeong, "Mechanical effect of colloidal silica in copper chemical mechanical planarization," Journal of Materials Processing Technology, Vol.209 (2009)
    [37] B. Cappella, P. Baschieri, C. Frediani, P. Miccoli and C. Ascoli, "Force-distance curves by AFM," Engineering in Medicine and Biology Magazine, IEEE, Vol.16 (1997)
    [38] B. Cappella and G. Dietler, "Force-distance curves by atomic force microscopy," Surface Science Reports, Vol.34 (1999)
    [39] J. Grobelny, N. Pradeep, D. I. Kim and Z. C. Ying, "Quantification of the meniscus effect in adhesion force measurements," Applied Physics Letters, Vol.88 (2006)
    [40] 陳昇照, "表面粗糙度與濕度影響之界面黏附力理論研究 (Theoretical Study for Adhesion Force with Surface Roughness and Humidity Effects)," 國立成功科技大學機械工程系博士論文, (2008)
    [41] T. L. Horng, "Analyses of vibration responses on nanoscale processing in a liquid using tapping-mode atomic force microscopy," Applied Surface Science, Vol.256 (2009)
    [42] J. M. Neumeister and W. A. Ducker, "Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers," Review of Scientific Instruments, Vol.65 (1994)
    [43] J. P. Cleveland, S. Manne, D. Bocek and P. K. Hansma, "A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy," Review of Scientific Instruments, Vol.64 (1993)
    [44] J. L. Hutter and J. Bechhoefer, "Calibration of atomic-force microscope tips," Review of Scientific Instruments, Vol.64 (1993)
    [45] J. E. Sader, "Parallel beam approximation for V-shaped atomic force microscope cantilevers," Review of Scientific Instruments, Vol.66 (1995)
    [46] J. E. Sader, J. W. M. Chon and P. Mulvaney, "Calibration of rectangular atomic force microscope cantilevers," Review of Scientific Instruments, Vol.70 (1999)
    [47] K. Cooper, A. Gupta and S. Beaudoin, "Substrate Morphology and Particle Adhesion in Reacting Systems," Journal of Colloid and Interface Science, Vol.228 (2000)
    [48] K. Cooper, N. Ohler, A. Gupta and S. Beaudoin, "Analysis of Contact Interactions between a Rough Deformable Colloid and a Smooth Substrate," Journal of Colloid and Interface Science, Vol.222 (2000)
    [49] K. Cooper, A. Gupta and S. Beaudoin, "Simulation of Particle Adhesion: Implications in Chemical Mechanical Polishing and Post Chemical Mechanical Polishing Cleaning," Journal of The Electrochemical Society, Vol.148 (2001)
    [50] K. Cooper, A. Gupta and S. Beaudoin, "Simulation of the Adhesion of Particles to Surfaces," Journal of Colloid and Interface Science, Vol.234 (2001)
    [51] A. Miyoshi, H. Nakagawa and K. Matsukawa, "Simulation on chemical mechanical polishing using atomic force microscope," Microsystem Technologies, Vol.11 (2005)
    [52] R. Burtovyy, Y. Liu, B. Zdyrko, A. Tregub, M. Moinpour, M. Buehler and I. Luzinov, "AFM Measurements of Interactions Between CMP Slurry Particles and Substrate," Journal of The Electrochemical Society, Vol.154 (2007)
    [53] Q. K. Ong and I. Sokolov, "Attachment of nanoparticles to the AFM tips for direct measurements of interaction between a single nanoparticle and surfaces," Journal of Colloid and Interface Science, Vol.310 (2007)
    [54] Y. K. Hong, J. H. Han, T. G. Kim, J. G. Park and A. A. Busnaina, "The Effect of Frictional and Adhesion Forces Attributed to Slurry Particles on the Surface Quality of Polished Copper," Journal of The Electrochemical Society, Vol.154 (2007)
    [55] N. Saka, T. Eusner and J. H. Chun, "Nano-scale scratching in chemical-mechanical polishing," CIRP Annals - Manufacturing Technology, Vol.57 (2008)
    [56] T. Eusner, N. Saka, J. H. Chun, S. Armini, M. Moinpour and P. Fischer, "Controlling scratching in Cu chemical mechanical planarization," Journal of The Electrochemical Society, Vol.156 (2009)
    [57] P. K. a. K. K. Yuuichi Hashiyama, "Study on functionality of fine particles in slurry for oxide CMP process," Proceeding of International Conference on Planarization/CMP Technology (ICPT), (2009)
    [58] Y. H. Keiichi Kimura, Panart Khajornrungruang, "Study on Material Removal Phenomena in CMP Process," Proceeding of International Conference on Planarization/CMP Technology (ICPT), (2007)
    [59] A. A. Tseng, J.-i. Shirakashi, S. Jou, J.-C. Huang and T. P. Chen, "Scratch properties of nickel thin films using atomic force microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol.28 (2010)

    QR CODE