簡易檢索 / 詳目顯示

研究生: 葉俊樑
Chun-Liang Yeh
論文名稱: 化學束磊晶成長氮化銦薄膜與特性分析研究
Growth and Characterization of Indium Nitride Thin Films Prepared by Chemical Beam Epitaxy
指導教授: 周賢鎧
Shyankay Jou
陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
口試委員: 黃鶯聲
Ying-Sheng Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 83
中文關鍵詞: 化學束磊晶薄膜氮化銦
外文關鍵詞: Chemical Beam Epitaxy, Thin Film, Indium Nitride
相關次數: 點閱:362下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究已成長高品質氮化銦(InN)薄膜在氮化鎵(001)的基板上,利用高解離性的氮源(HN3)來當化學束磊晶技術來成長薄膜。成長薄膜特性分析儀器使用:高解析度場發射掃描電子顯微鏡(FE-SEM)、高解析度穿透電子顯微鏡(HR-TEM)、選區電子繞射(SAED)、X光繞射儀(XRD)、X-ray rocking curve(XRC)、拉曼散射光譜(RS)以及光激發光光譜(PL)。
從高解析穿逶式電子顯微鏡及選區繞射圖的結果顯示氮化銦的高結晶性以及近乎磊晶特性,此外,在表面成長氮化銦(001)於氮化鎵(001)基板上,在沒有使用其他緩衝層狀態下,成長氮化銦薄膜呈現近乎(001)成長方向。根據實驗觀察沉積溫度以及速率會影響在氮他銦表面的形貌及成長方向。
在這篇論文中,利用銦放在Kundsen cell (K-cell)內與氮源(HN3)來反應,近乎單一方向氮化銦薄膜的磊晶成長在氮化鎵(001)方向上基板,形成高品質氮化銦薄膜。並探討氮化銦薄膜的結構與特性分析。


We report successful growth of high-quality indium nitride (InN) thin films on GaN(001)/sapphire (SA)(001) substrates, via chemical beam epitaxy (CBE) using highly volatile HN3 as nitrogen source reagent. Characterizations of the as-grown films have been carried out using field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), selected-area electron diffractometry (SAED), X-ray diffractometry (XRD), X-ray rocking curve (XRC), Raman scattering (RS) and Photoluminescence (PL). HR-TEM micrographs and SAED patterns show the high crystallinity and nearly epitaxial growth of InN. Moreover, using the GaN(001)/sapphire(001) substrate without any buffer layer, the deposited InN films exhibit nearly pure (001) out-plane orientation. The effects of deposition temperature and rate on the surface morphology and out-plane orientation have been observed and discussed.
Objective of this thesis is to synthesize and characterize InN thin films. A nearly epitaxial InN(001) film on the GaN(001)/sapphire(001) substrates is formed by using the K-cell (In) and HN3.

Abstract(Chinese) ……………………………………………………………………I Abstract (English)……………………………………………………………………II Acknowledgement …………………………………………………………………III Table of Contents …………………………………………………………………IV List of Figures ………………………………………………………………………VI List of Tables………………………………………………………………………XI Chapter 1 Introduction ………………………………………………………………1 1.1 History …………………………………………………………………………1 1.2 Crystalline properties ……………………………………………………………2 1.3 Electrical properties ……………………………………………………………5 1.3.1 Background defects …………………………………………………………5 1.3.2 Hall mobility and electron concentration in undoped InN ……………………5 1.4 Optical properties ………………………………………………………………8 1.5 Application ……………………………………………………………………11 1.5.1 Blue/UV light emitting diodes (LEDs) and laser diodes (LDs) ………………11 1.5.2 High-speed high-performance heterojunction field-effect transistors ………11 1.5.3 Solar cell ……………………………………………………………………12 1.6 Hydrazoic acid (HN3) …………………………………………………………14 1.7 Chemical Beam Epitaxy System (CBE) ………………………………………15 Chapter 2 Experimental section ……………………………………………………18 2.1 Growth of InN thin film using Chemical Beam Epitaxy System ………………18 2.2 Sample preparation ……………………………………………………………21 2.3 Characterization techniques ……………………………………………………22 2.3.1 X-ray diffractometer (XRD) …………………………………………………22 2.3.2 Field-Emission Scanning Electron Microscope (FE-SEM) …………………23 2.3.3 Raman spectra (RS) …………………………………………………………24 2.3.4 High-resolution transmission electron microscopy (HR-TEM) ………………25 2.3.5 X-ray rocking curve (XRC) …………………………………………………26 Chapter 3 Growth and Characterization of InN Thin Films …………………………27 3.1 The substrate temperature effect ………………………………………………27 3.1.1 Morphology …………………………………………………………………27 3.1.2 Microstructure and interface ………………………………………………30 3.1.3 X-ray diffraction ……………………………………………………………35 3.1.4 Raman Spectra ………………………………………………………………35 3.2 The K-cell temperature effect …………………………………………………38 3.2.1 Morphology …………………………………………………………………38 3.2.2 X-ray diffraction and rocking curve …………………………………………42 3.2.3 Raman Spectra ………………………………………………………………42 3.3 The HN3 flow rate effect ………………………………………………………48 3.3.1 Morphology …………………………………………………………………48 3.3.2 X-ray diffraction ……………………………………………………………51 3.3.3 Raman Spectra ………………………………………………………………51 3.4 The growth time effect …………………………………………………………54 3.4.1 Surface morphology and chemical composition ………………………………54 3.4.2 X-ray diffraction ……………………………………………………………59 3.4.3 Raman Spectra ………………………………………………………………59 3.5 Photoluminescence of InN ………………………………………………………62 3.5.1 Temperature-dependence photoluminescence ………………………………62 3.5.2 Power-dependence photoluminescence ………………………………………67 Chapter 4 Conclusion ………………………………………………………………72 References …………………………………………………………………………73 Autobiography ………………………………………………………………………81 Publications …………………………………………………………………………82

[1] K. Osamura, S. Nara and Y. Murakami, “Preparation and optical properties of Ga1-xInxN thin films”, J. Appl. Phys., Vol.46, pp.3432-3437 (1975).
[2] H. J. Hovel and J. J. Cuomo, “Electrical and Optical Properties of rf-Sputtered GaN and InN”, Appl. Phys. Lett., Vol.20, pp.71-73 (1972).
[3] K. L. Westra, R. P. W. Lawson and M. J. Brett, “The effects of oxygen contamination on the properties of reactively sputtered indium nitride films”, J. Vac. Sci. Technol., Vol.A6, pp.1730-1732 (1988).
[4] T. Matsuoka, H. Tanaka, and A. Katsui, “Wide-Gap Semiconductor (In,Ga)N ”, Inst. Phys. Conf. Ser., Vol.106, p.141 (1990).
[5] A. Yamamoto, T. Tanaka, K. Koide, and A. Hashimoto, “Improved Electrical Properties for Metalorganic Vapour Phase Epitaxial InN Films”, Phys. Stat. Sol. (B) Vol.194, pp.510-514 (2002).
[6] Y. Saito, N. Teraguchi, A. Suzuki, T. Araki, and Y. Nanishi, “Growth of High-Electron-Mobility InN by RF Molecular Beam Epitaxy”, Jpn. J. Appl. Phys., Vol.40, pp.L91-L93 (2001).
[7] M. Higashiwaki and T. Matsui, “High-Quality InN Film Grown on a Low Temperature Grown GaN Intermediate Layer by Plasma Assisted Molecular Beam Epitaxy”, Jpn. J. Appl. Phys., Vol.41, pp.L540-L542 (2002).
[8] H. Lu, W. J. Schaff, J. Hwang, H. Wu, G. Koley, and L. F. Eastman, “Effect of an AlN buffer layer on the epitaxial growth of InN by molecular-beam epitaxy”, Appl. Phys. Lett., Vol.79, pp.1489-1491 (2001).

[9] R. Juza and H. Hahn, “Über die Kristallstrukturen von Cu3N, GaN und InN Metallamide und Metallnitride”, Z. Anorg. Allg. Chem., Vol.239, p.282 (1938).
[10] T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride”, J. Appl. Phys., Vol.59, pp.3241-3244 (1986).
[11] K. Kubota, Y. Kobayashi, and K. Fujimoto, “Preparation and properties of III-V nitride thin films”, J. Appl. Phys., Vol.66, pp.2984-2988 (1989).
[12] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul,, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap”, Phys. Stat. Sol., B Vol.229, pp.R1-R3 (2002).
[13] K. Kim, W. R. L. Lambrecht, and B. Segall, “Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN and InN”, Phys. Rev. B Vol.53, pp.16310-16326 (1996).
[14] A. Wakahara and A. Yoshida, “Heteroepitaxial growth of InN by microwave -excited metalorganic vapor phase epitaxy”, Appl. Phys. Lett., Vol.54, pp.709-711 (1989).
[15 ] S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, “Structural properties of InN on GaN grown by metalorganic vapor-phase epitaxy”, J. Appl. Phys., Vol.85, pp.7682-7688 (1999).
[16] Y. Saito, T. Yamaguchi, H. Kanazawa, K. Kano, T. Araki, Y. Nanishi, A. Suzuki, and N. Teraguchi, “Growth of high-quality InN using low-temperature intermediate layers by RF-MBE”, J. Cryst. Growth, Vol.237–239, pp.1017-1021 (2002).
[17] A. Yamamoto, T. Tanaka, A. G. Bhuiyan, K. Sugita, K. Kasashima, Y. Kimura, A. Hashimoto, and V. Yu. Davydov, 5th International Conference on Nitride Semiconductors (ICNS-5), Nara, Japan, May 25–30, (2003).
[18] S. Strite, D. Chandrasekhar, D. J. Smith, J. Sariel, H. Chen, N. Teraguchi, and H. Morkoc, “Structural properties of InN films grown on GaAs substrates: observation of the zincblende polytype”, J. Cryst. Growth, Vol.127, pp.204-208 (1993).
[19] A. P. Lima, A. Tabata, J. R. Leite, S. Kaiser, D. Schikora, B. Schottker, T. Frey, D. J. As, and K. Lischka, “Growth of cubic InN on InAs(0 0 1) by plasma-assisted molecular beam epitaxy”, J. Cryst. Growth, Vol.201-202, pp.396-398 (1999).
[20] P. Bhattacharya, T. K. Sharma, S. Singh, A. Ingale, and L. M. Kukreja, “Observation of zincblend phase in InN thin films grown on sapphire by nitrogen plasma-assisted pulsed laser deposition”, J. Cryst. Growth, Vol.236, pp.5-9 (2002).
[21] D. W. Jenkins and J. D. Dow, “Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN”, Phys. Rev. B, Vol.39, pp.3317-3329 (1989).
[22] A. Yamamoto, T. Shin-ya, T. Sugiura, and A. Hashimoto, “Characterization of MOVPE-grown InN layers on α-Al2O3 and GaAs substrates”, J. Cryst. Growth, Vol.189-190, pp.461-470 (1998).
[23] Y. C. Pan, W. H. Lee, C. K. Shu, H. C. Lin, C. I. Chiang, H. Chang, D. S. Lin,
M. C. Lee, and W. K. Chen, “Influence of Sapphire Nitridation on Properties of Indium Nitride Prepared by Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. Part 1, Vol.38, pp.645-648 (1999).
[24] A. Yamamoto, Y. Murakami, K. Koide, M. Adachi, and A. Hashimoto, “Growth Temperature Dependences of MOVPE InN on sapphire Substrates”, Phys. Stat. Sol. B, Vol.228, pp.5-8 (2001).
[25] A. G. Bhuiyan, T. Tanaka, A. Yamamoto, and A. Hashimoto, “Laser-Assisted Metalorganic Vapor-Phase Epitaxy (LMOVPE) of Indium Nitride (InN)”, Phys. Stat. Sol. A, Vol.194, pp.502-505 (2002).
[26] K. Osamura, K. Nakajima, and Y. Murakami, “Fundamental absorption edge in GaN, InN and their alloys”, Solid State Commun,Vol.11, pp.617-621 (1972).
[27] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, “Optical bandgap energy of wurtzite InN”, Appl. Phys. Lett., Vol.81, pp.1246-1248 (2002).
[28] J. Wu, W. Waluchiewicz, K.M Yu, J.W. Ager III, E.E. Haller, H. Lu, W. J. Schaff, Y. Saito, Y. Nanishi, “Unusual properties of the fundamental band gap of InN”, Appl. Phys. Lett., Vol.80, pp.3967-3969 (2002).
[29] Y. Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suziki, “Growth Temperature Dependence of Indium Nitride Crystalline Quality Grown by RF-MBE”, Phys. Stat. Sol. B, Vol.234, pp.796-800 (2002).
[30] S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, “Anomalous features in the optical properties of Al1-xInxN on GaN grown by metal organic vapor phase epitaxy”, Appl. Phys. Lett., Vol.76, pp.876-878 (2000).
[31] T. Inushima, V. U. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, and S. Ohoya, “Physical properties of InN with the band gap energy of 1.1 eV”, J. Cryst. Growth, Vol.227-228, pp.481-485 (2001).
[32] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthm&uuml;ller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, E. E. Haller, “Band Gap of InN and In-Rich InxGa1 - xN alloys (0.36 < x < 1)”, Phys. Stat. Sol. B, Vol.234, pp.787-795 (2002).
[33] M. Hori, K. Kano, T. Yamaguchi, N. Teraguchi, A. Suzuki, “Optical Properties
of InxGa1 - xN with Entire Alloy Composition on InN Buffer Layer Grown by RF-MBE”, Phys. Stat. Sol. B, Vol.234, pp.750-754 (2002).
[34] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthm&uuml;ller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys”, Phys. Stat. Sol. B, Vol.234, pp.787-795 (2002).
[35] T. Miyajima, Y. Kudo, K.-L. Liu, T. Uruga, T. Honma, Y. Saito, M. Hori, Y. Nanishi, T. Kobayashi, S. Hirata T. Miyajima , “Structure Analysis of InN Film Using Extended X-Ray Absorption Fine Structure Method”, Phys. Stat. Sol. B, Vol.234, pp.801-816 (2002).
[36] Q. Guo, A. Yoshida, “Microhardness of Indium Nitride Single Crystal Films”, Japan. J. Appl. Phys., Vol.33, pp.90-91 (1994).
[37] Motlan, E.M. Goldys, T.L. Tansley, “Optical and electrical properties of InN grown by radio-frequency reactive sputtering”, J. Cryst. Growth, Vol.241, pp.165-170 (2002).
[38] I. Akasaki, H. Amano, N. Koide, M. Kotaki, and K. Manabe, “Conductivity control of GaN and fabrication of UV/blue GaN light emitting devices”, Physica B, Vol.185, pp.428 -432 (1993).
[39] S. Nakamura, M. Senoh, and T. Mukai, “P-GaN / N-InGaN / N-GaN Double-heterostructure Blue-lijght-emitting Diodes”, Jpn. J. Appl. Phys., Vol.32, pp.L8-L11(1993).
[40] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based Multi-Quantum-well-structure Laser Diodes”, Jpn. J. Appl. Phys., Vol.35, pp.L74-L76 (1996).
[41] S. N. Mohammad and H. Morkoc, “Progress and prospects of group-III nitride semiconductors”, Progress in Quantum Electronics, Vol.20, pp.361-525 (1996).
[42] V. W. L. Chin, T. L. Tansley, and T. Osotchan, “Electron mobllities in gallium, indium, atid aluminum nitrldes”, J. Appl. Phys., Vol.75, pp.7365-7372 (1994).
[43] S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar, and L. F. Eastman, “Electron transport in wurtzite indium nitride”, J. Appl. Phys., Vol.83, pp.826-829 (1998).
[44] E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, “Ensemble Monte Carlo study of electron transport in wurtzite InN ”, J. Appl. Phys., Vol.85, pp.916-923 (1999).
[45] B. E. Foutz, S. K. O’leary, M. S. Shur, and L. F. Eastman, “Transient electron transport in wurtzite GaN, InN, and AlN”, J. Appl. Phys., Vol.85, pp.7727-7734 (1999).
[46] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, “Metalorganic chemical vapor deposition growth of InN for InN/Si tandem solar cell”, Sol. Energy Mater. Sol. Cells, Vol.35, pp.53-60 (1994).

[47] S. J. Pearton, C. R. Abernathy, and F. Ren, “Electrical passivation in hydrogen plasma exposed GaN”, Electron. Lett., Vol.30, pp.527-528 (1994).
[48] S. Nakamura, N Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of P-type GaN films”, Jpn. J. Appl. Phys., Vol.31, pp.1258-1266 (1992).
[49] T. George, W. T. Pike, M. Asif Khan, J. N. Kuznia, and P. Chang-Chien, “A Microstructural Comparison of the Initial Growth of AlN and GaN Layers on Basal Plane Sapphire and SiC Substrates by Low Presusre Metalorganic Chemical Vapor Deposition”, J. Electron. Mater., Vol.24, pp.241-247 (1995).
[50] D. G. Chtchekine, L. P. Fu, G. D. Gilliland, Y. Chen, S. E. Ralph, K. K. Bajaj, Y. Bu, M. C. Lin, F. T. Bacalzo, and S. R. Stock, “Properties of low-pressure chemical vapor epitaxial GaN films grown using hydrazoic acid (HN3)”, J. Appl. Phys., Vol.81, pp.2197-2207 (1997).
[51] W. T. Tsang, “Chemical beam epitaxy of GaInAs/InP quantum well and heterostructure devices”, J. Cryst. Growth, Vol.81, pp.261-270 (1987).
[52] W. T. Tsang, “Chemical Beam Epitaxy”, IEEE CDM, pp.18-24 (1998).
[53] D. Behr, J. Wagner, J. Schneider, H. Amano, and I. Akasaki, “Raman study of resonance effects in Ga1-xAlxN solid solutions”, Appl. Phy. Lett., Vol.68, pp.2404-2406 (1996).
[54] Ashraful Ghani Bhuiyan, Akihiro Hashimoto, and Akio Yamamotoa, “Indium nitride (InN): A review on growth, characterization, and properties”, Applied Physics Review, Vol.94, pp.2279-2808 (2003).
[55] T. Yodo, H. Yona, H. Ando, D. Nosei, and Y. Harada, “Strong band edge luminescence from InN films grown on Si substrates by electron cyclotron resonance-assisted molecular beam epitaxy”, Appl. Phys. Lett., Vol.80, pp.968-970 (2002).
[56] 李宗翰, “Growth and optoelectronic properties of InN thin films”,輔仁大學物理所碩士論文, p.12 (2001).
[57] Y. Nanishi, Y. Saito and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys”, Jap. J. Appl. Phys., Vol.42, pp.2549-2559 (2003).
[58] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Auger III, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN”, Phys. Rev. B, Vol.66, pp.201403-1-201403-4 (2002).
[59] F. Chen, A. N. Cartwright, H. Lu, William J. Schaff, “Temperature-dependent optical properties of wurtzite InN”, Physica E, Vol.20, pp.308-312 (2004).
[60] http://www.webelements.com/webelements/compounds/text/In/In1N1-
25617985.html
[61] http://www.infojet.cz/science/sci0029.html
[62] P. C. Yen, R. S. Chen, Y. S. Huang, C. T. Chia, R. H. Chen and K. K. Tiong, “The first-order Raman spectra of OsO2”, J. Phys., Vol.15, pp.1487-1494 (2003).
[63] R. S. Chen, Y. S. Chen, Y. S. Huang, Y. L. Chen, Y. Chi, C. S. Liu, K. K. Tiong and A. J. Carty, “Growth of IrO2 Films and Nanorods by Means of CVD: An Example of Compositional and Morphological Control of Nanostructures”, Chem. Vap. Deposition, Vol.9, pp.301-305 (2003).

QR CODE