簡易檢索 / 詳目顯示

研究生: 陳建霖
Jian-Ling Chen
論文名稱: 最佳控制法則在均質進氣壓燃引擎之應用研究
Application of Optimal Control on Homogeneous Charge Compression Ignition (HCCI) Engines
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 陳亮光
Liang-kuang Chen
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 86
中文關鍵詞: 線性二階調節器模型預測控制卡爾曼濾波器
外文關鍵詞: LQR
相關次數: 點閱:203下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇文章中,利用線性控制中線性二階調節器LQR(Linear Quadratic Regulator)以及模型預測控制MPC(Model Predictive Control)的技術設計控制器來控制均質進氣壓燃(Homogeneous Charge Compression Ignition, HCCI)引擎。控制目標是在給定一個燃油的步階變化以及定值的引擎轉速下能夠藉由調整再回吸揚程RBL(Rebreathing Valve Lift)以及廢氣再循環閥EGR(Exhaust gas recirculation)的開度來控制 燃油燃燒時間點 以及空氣燃油比AFR(Air Fuel Ratio)。為了進行以模型為基礎之控制器設計,一個單缸HCCI引擎之高階模型將先被線性化,而線性化的模型將以線性控制為基礎進行線性二階調節器LQR(Linear Quadratic Regulator)以及模型預測控制MPC(Model Predictive Control)控制器的設計。並且主要分成四種控制器的情形去討論:LQR、MPC、LQR加上積分器、MPC加上積分器。另外,由於實際情形下,均質進氣壓燃(HCCI)引擎系統中存在難以量測的狀態變數,故此我們也設計了估測器來估測這些狀態。


    In this thesis, a linear controller for homogeneous charge compression ignition (HCCI) engines is developed based on LQR(linear quadratic regulator) and MPC(model predictive control) control techniques. The control goal is to maintain the combustion of 50% fuel burned and AFR(Air Fuel Ratio) by modulating RBL(Rebreathing Valve Lift) and EGR(Exhaust gas recirculation)during fuel step changes. In order to design a linear controller, a single-cylinder high order HCCI engine is first linearized. The linearized model is used to design LQR and MPC controller. There are four simulation results discussed: LQR、MPC、LQR plus integrator、MPC plus integrator. Furthermore, there exist some stats that are not easily measured in a HCCI engine, so a observer is then designed to estimate these stats.

    目錄 摘要 ............................................................................................................................Ⅱ Abstract .......................................................................................................................Ⅲ 致謝 ............................................................................................................................Ⅳ 目錄 ............................................................................................................................Ⅴ 圖目錄 ......................................................................................................................Ⅶ 表目錄..........................................................................................................................Ⅸ 第一章 緒論 ..............................................................................................................1 1.1 背景介紹........................................................................................................1 1.2 文獻探討........................................................................................................3 1.2.1 HCCI文獻回顧.......................................................................................3 1.2.2 Model Predictive Control (模型預測控制)文獻回顧 ..........................4 1.3 論文架構 ......................................................................................................6 第二章 模型組成........................................................................................................7 2.1 進氣歧管填充之動態行為 ..........................................................................9 2.2 進氣歧管關閉時( IVC )汽缸內的狀態.........................................................9 2.3 燃燒模型 .....................................................................................................10 2.4 引擎模型每一循環之延遲效應..................................................................14 2.5 排氣歧管動態行為模型 ............................................................................ 15 2.6 高階模型討論 ............................................................................................18 第三章 控制器建立..................................................................................................20 3.1 線性化分析..................................................................................................20 3.2 線性二階調節器(LQR)控制器 ...............................................................23 3.3 模型預測控制(MPC)控制器 .....................................................................24 3.3.1引言.....................................................................................................24 3.3.2模型預測控制(MPC)的基本架構與原理..........................................24 3.4 估測器設計...................................................................................................30 3.5 加入積分器的控制......................................................................................30 3.5.1 加入積分器後擴張的狀態空間表示式 ..........................................30 3.5.2 加入積分器後的LQR與MPC ........................................................31 3.6 參數的選取..................................................................................................32 3.6.1 可觀性分析 .....................................................................................32 3.6.2卡爾曼濾波器(Kalman filter)、LQR以及MPC的參數選取 ..........34 第四章 模擬結果 ....................................................................................................37 4.1 估測器模擬結果 ........................................................................................37 4.2 控制器對線性模型之控制結果 ................................................................39 4.2.1 LQR模擬結果 ...............................................................................39 4.2.2 MPC模擬結果....................................................................................42 4.3 加入積分器後控制器對線性模型之控制結果..........................................47 4.3.1 LQR模擬結果 ..................................................................................47 4.3.2 MPC模擬結果 .................................................................................51 4.4 控制器對非線性模型之控制結果 ..........................................................56 4.4.1有估測器之LQR與MPC比較結果 ...............................................56 4.4.2有估測器加積分器之LQR與加入限制條件的MPC比較結果 ....58 4.4.3輸出有量測雜訊時加入估測器與積分器之LQR與MPC的比較結 果 .....................................................................................................60 第五章 結論與未來展望 .........................................................................................63 5.1 結論 .............................................................................................................63 5.2 未來展望 .....................................................................................................64 附錄......................................................................................................................65 參考文獻 .................................................................................................................70

    [1] C. J. Chiang, “Modeling and control of homogeneous charge compression ignition engines with high dilution,” C. J. Chiang’s Ph.D. Dissertation.

    [2] C. J. Chiang and A. G. Stefanopoulou, “Sensitivity analysis of combustion timing and duration of homogeneous charge compression ignition (HCCI) engines,” in Proc. of the American Control Conf., 2006, pp. 1857-1862.

    [3] C. J. Chiang and A. G. Stefanopoulou, “Stability analysis in homogeneous charge compression ignition (HCCI) engines with high dilution,” IEEE Trans. Control Syst. Technol., vol. 15, no. 2, pp. 209-219, Mar. 2007.

    [4] F. Agrell, H.-E. Angstrom, B.Eriksson, and J. Linderyd. Integrated simulation and engine test of closed loop HCCI control by aid of variable valve timing. SAE paper 2003-01-0748

    [5] J. C. Livengood and P. C. Wu. Correlation of auto-ignition phenomena in internal combustion engines and rapid compression machines. In Proceedings of Fifth International Symposium on Combustion, pages 347-356, 1955.

    [6] J. Willand, R.-G. Nieberding, G. Vent, and C. Enderle. The Knocking syndrome – its cure and its potential. SAE paper 982483.

    [7] C. Ji and P. D. Ronney. Modeling of engine cyclic variations by a thermodynamic model. SAE paper 2002-01-2736.

    [8] D. J. Rausen, A. G. Stefanopoulou, J.-M. kang, J. A. Eng, and T.-W. Kuo, “A mean-value model for control of homogeneous charge compression ignition (HCCI) engines,” ASME J. Dyn. Syst., Meas. Control, vol. 127, no. 3, pp. 355-362, 2005.

    [9] D. S. Stanglmaier and E. Roberts. Homogeneous charge compression ignition (HCCI): Benefits, compromises, and future engine application. SAE paper 1999-01-3682.

    [10] P. Najt and D. Foster. Compression-ignited homogeneous charge combustion. SAE paper 830264.

    [11] R. H. Thring. Homogeneous-charge compression-ignition (HCCI) engines. SAE paper 892068.

    [12] M. P. Halstead, L. J. Kirsch, and C. P. Quinn, “The auto-ignition of hydrocarbon fuels at high temperatures and pressures, fitting of a mathematical model,” Combustion and Flame, 30:45-60, 1977.

    [13] F. L. Dryer and I. Glassman, “Fundamental and semi-global kinetic mechanisms of hydrocarbon combustion,” Annual Report Oct. 1, 1977-Sept. 1978, DOE Contract NO. C00-4272-3, 1978.

    [14] G. Shaver, J. Gerdes, P. Jain, P. Caton, and C. Edwards, “Dynamic modeling of residual-affected HCCI engines with variable valve actuation,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 127, no. 3, pp. 374-381, 2005.

    [15] G. M. Shaver and J.C. Gerdes, “Cycle-to-cycle control of HCCI engines,” 2003 ASME Proc. of International Mechanical Engineering Congress and Exposition IMECE2003-41966.

    [16] Nick J. Killingsworth, Salvador M. Acevs, Daniel L. Flowers, and Miroslav Krstic’. “A simple HCCI engine model for control.” to appear at CCA/CACSD/ISIC, October 2006.

    [17] M. Xiao, N. Kazantzis, C. Kravaris, and A. J. Krener, “Nonlinear discrete-time observer design with linearizable error dynamics,” IEEE Trans. Autom. Control, vol. 48, no. 4, pp. 622-626, Apr. 2003.

    [18] J. Bengtsson, P. Strandh, R. Johansson, P. Tunestal, and B. Johansson. “Multi-output control of a heavy duty hcci engine using variable valve actuation and model predictive control.” SAE paper 2006-01-0873.

    [19] Bryson , A. E., Jr., and Ho, Y. C., Applied Optimal Control, Hemisphere, 1975.

    [20] J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model Predictive Heuristic Control: Applications to Industrial Processes,” Automatica, vol. 14, no. 5, pp. 413-428, 1978.

    [21] R. Rouhani and R. K. Mehra, “Model Algorithmic Control (MAC); Basic Theoretical Properties,” Automatica, vol. 18, no. 4, pp. 401-414, 1982.

    [22] C. R. Cutler and B. L. Ramaker, “Dynamic matrix control- A computer control algorithm,” in Automatic Control Conference, San Francisco, CA, Paper WP5-B, 1980.

    [23] D.W. Clarke, C. Mohtad and P.S.Tuffs, ‘Generalized Predictive Control –Part I. The Basic Algorithm’, Automatica, Vol. 23, No. 2, pp. 137-148, 1987.

    [24] D.W. Clarke, C. Mohtadi and P. S. Tuffs, ‘Generalized Predictive Control-Part II’, Automatica, Vol. 23, No. 2, pp. 149-160, 1987.

    [25] M. A. Lelic and M. B. Zarrop, “Generalized Pole-Placement Self-Tuning Controller. Part 1. Basic Algorithm,” International Journal of Control, vol. 46, no. 2, pp. 547-568, 1987.

    [26] W. H. Kwon and A. Pearson, “A modified quadratic cost problem and feedback stabilization of a linear system,” IEEE Transactions on Automatic Control, vol. 22, no. 5, pp. 838-842, 1977.

    [27] W. H. Kwon and A. Pearson, “On Feedback Stabilization of Time-Varying Discrete Linear Systems,” IEEE Transactions on Automatic Control, vol. 23, no. 3, pp. 479-481, 1978.

    [28] W. H. Kwon and D. G. Byun , “Receding Horizon Tracking Control as a Predictive Control and its Stability Properties,” International Journal of Control, vol. 50, no. 3, pp. 1807-1824, 1989.

    [29] Thomas Kailath. Linear Systems. Prentice-Hall Inc, 1980

    [30] Fletcher, R. Practical Methods of Optimization, John Wiley & Sons, Chichester, UK,

    [31] J. Bengtsson, P. Strandh, R. Johansson, P. Tunestal, and B. Johansson, "Hybrid control of homogeneous charge compression ignition (HCCI) engine dynamics," International Journal of Control, Vol. 79, NO. 5, May 2006, 422-448.

    [32] G. M. Shaver, "PHYSICS-BASED MODELING AND CONTROL OF RESIDUAL-AFFECTED HCCI ENGINES USING VARIABLE VALVE ACTUATION," G. M. Shaver's Ph.D. Dissertation.
    [33] Agrell, F., angstrom, H-E, Eriksson, B. and Wikander, J. Transient control of HCCI through combined intake and exhaust valve actuation. SAE Technical Paper 2003-01-3172
    [34] G. Haraldsson, P. Tunestal and B. Johansson, SAE Powertrain & Fluid Systems Conference, San Diego CA, USA, October 2002.“HCCI Combustion Phasing in a Multi Cylinder Engine using Variable Compression Ratio”

    [35] Olsson, J., P. Tunestal and B. Johansson (2001). Closed-loop control of an HCCI engine. SAE Technical Paper 2001-01-1031.

    [36] Ravi, N., Roelle, M. J., Jungkunz, A. F., andGerdes, J. C. (2006). A physically based two state model for controlling exhaust recompression HCCI in gasoline engines. Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition,IMECE2006-15331.

    QR CODE