簡易檢索 / 詳目顯示

研究生: 謝育安
Yu-an Hsieh
論文名稱: 應用MRAC設計聯結車鐮刀效應預防控制器
MRAC Design of Articulated Vehicles Jack-knife Prevention
指導教授: 陳亮光
Liang-kuang Chen
口試委員: 黃安橋
An-Chyau Huang
高維文
Wei-Wen Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 75
中文關鍵詞: 適應性控制聯結車鐮刀效應
外文關鍵詞: adaptive control, Articulated Vehicles, Jackknife
相關次數: 點閱:183下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

聯結車輛發生意外事故時往往較一般小型車輛所造成的意外事故來的嚴重,所以聯結車輛的安全系統發展相形之下更為重要,而聯結車的意外事故類型也與單車體車輛不同,例如鐮刀效應、半拖車失控或翻覆等。而在本研究中將設計一差動剎車控制器來預防鐮刀效應之發生。由於一般聯結車都使用在貨物的運送,但每一次所運送的貨物重量與配置都不一樣,如此會造成聯結車半拖車的重量及重心位置等車輛參數也跟著不一樣,亦即聯結車的模型參數存在著未知或不確定。若鐮刀效應預防控制器僅針對固定車輛參數而設計,可能因為受控系統參數的不確定而導致控制器效能不佳,影響鐮刀效應預防的效果。故本研究針對此問題設計一能適應半拖車上不同載重及重心位置之鐮刀效應預防控制器,並透過追蹤理想化的聯結車第五輪角的動態效應,藉由一適應性控制器控制半拖車後方之差動煞車,使半拖車產生一擺力矩以抑制第五輪的轉動,達到鐮刀效應的預防。最後,將本研究所設計之控制器實際應用於縮小型聯結車輛上,以驗證本研究所設計之控制器的效能。


Generally the accidents involving the articulated vehicles cause more severe damage compared to the passenger cars, and consequently the development of the associated active safety systems is of great importance. There are several unique crash types that only occur in articulated vehicles, e.g., the jackknife, trailer swing or rollover, etc… In this research a differential braking controller is designed to prevent the articulated vehicles jack-knifing. Since the articulated vehicles are commonly used for freight transportation, the loading conditions change among different trips. This results in the variations in the vehicle model parameters, and if the controller is designed based on a set of nominal vehicle parameters, the performance of the controller may be degraded. Therefore, a model reference adaptive control is developed in this research to regulate the tracking performance of a desired fifth wheel angle by matching the reference model characteristics. Finally, the designed controller is implemented on a scaled articulated vehicle to verify the effectiveness experimentally.

摘要 iii 目錄 v 圖目錄 vii 表目錄 x 第1章 緒論 1 1-1 前言 1 1-2 文獻探討 3 1-2-1 鐮刀效應發生之情形 3 1-2-2 聯結車輛安全系統 5 1-2-3 應用於聯結車安全系統之適應性控制系統 7 1-3 論文目標 8 1-4 工作項目 8 1-5 預期貢獻 9 第2章 實驗設備與車輛參數量測 10 2-1 縮小型聯結車 10 2-2 控制與資料擷取平台架構 11 2-3 縮小型聯結車車輛參數量測 12 2-3-1 縮小型聯結車重心位置量測 12 2-3-2 轉向勁度量測[32] 13 第3章 聯結車車輛模型分析與驗證 15 3-1 聯結車車輛模型介紹 15 3-2 縮小型聯結車之維度分析 20 3-3 縮小型聯結車之模型驗證 28 3-4 半拖車於不同載重及重心位置對鐮刀效應之影響 29 第4章 鐮刀效應預防控制器之設計 31 4-1 Output feedback MRAC 31 第5章 控制器效能之模擬與實驗評估 36 5-1 鐮刀效應預防控制器模擬 36 5-1-1 MRAC控制器模擬 37 5-1-2 MRAC控制器與PI控制器之比較 42 5-2 實驗探討半拖車於不同載重及重心位置對鐮刀效應之影響 44 5-3 半拖車後輪差動煞車之縱向煞車力驗證 46 5-4 鐮刀效應預防控制器驗證 48 第6章 結論與未來展望 52 6-1 結論 52 6-2 未來工作與展望 52 參考文獻 54 附錄A 控制與資料擷取平台介紹 58 附錄B 聯結車動態方程式[4] 61

[1] “汽車系統介紹,” http://www.usb20.idv.tw/autocar/data/s2c/20070519201205.html
[2] P. Hingwe, J. Y. Wang, M. Tai, M. Tomizuka, “Lateral Control of Heavy Duty Vehicles for Automated Highway System: Experimental Study on a Tractor Semi-trailer,” California Partners for Advanced Transit and Highways (PATH), Working Papers: Paper UCB-ITS-PWP-2000-1, Jan. 1 2000
[3] “Stability Enhancement Systems With Integrated ABS,” http://www.meritorhvs.com/MeritorHVS_Documents/SP-0679%20Stability%20LR.pdf
[4] C. Chen, M. Tomizuka, “Modeling and Control of Articulated Vehicles,” California Partners for Advanced Transit and Highways (PATH), Research Reports: Paper UCB-ITS-PRR-97-42, Jan. 1 1997
[5] C. Chen, M. Tomizuka, “Steering and Independent Braking Control for Tractor-Semitrailer Vehicle in Automated Highway Systems,” Decision and Control, 1995., Proceedings of the 34th IEEE Conference on, New Orleans, LA, USA, Vol. 2, Dec. 13-15 1995, pp.1561-1566
[6] C. Chen, M. Tomizuka, “Lateral Control of Commercial Heavy Vehicle,” Vehicle System Dynamics, Vol. 33, No. 6, June 2000, pp.391-420
[7] T. S. Lee, Y. H. Chen, C. H. Chuang, “Regulating Performance for Tractor-Semitrailer Vehicle Systems: A Lyapunov Minimax Approach,” American Control Conference, 1997. Proceedings of the 1997, Albuquerque, NM, USA, Vol. 4, Jun 4-6 1997, pp.2473-2477
[8] B. Stevenson, P. Ridley, “An automated vehicle stability control system for heavy articulated vehicles,” Proceedings of the 2005 Australasian Conference on Robotics & Automation, Sydney, Australia, Dec. 5-7 2005
[9] Anon, “Are Anti-jackknife Devices Feasible,” Automotive Engineering (Warrendale, Pennsulvania), Vol. 97, No. 11, Nov. 1989, pp.39-41
[10] Y. He, A. Khajepour, J. McPhee, X. Wang, “Dynamic modeling and stability analysis of articulated frame steer vehicles,” International Journal of Heavy Vehicle Systems, Vol.12, No. 1, 2005, pp.28-59
[11] E. Dahlberg, J. Wideberg, “Influence of the fifth-wheel location on heavy articulated vehicle handling,” 8th International Symposium on Heavy Vehicles Weights and Dimensions, Gauteng, South Africa, Mar. 14-18 2004
[12] M. Bouteldja, A. Koita, V. Dolcemascolo, J. C. Cadiou, “Prediction and Detection of Jackknifing Problems for Tractor Semi-Trailer,” Vehicle Power and Propulsion Conference, 2006. VPPC '06. IEEE, Windsor, England, UK, Sept. 6-8 2006, pp.1-6
[13] W. Ma, H. Peng, “Worst-case manoeuvres for the roll-over and jackknife of articulated vehicles,” American Control Conference, 1998. Proceedings of the 1998, Philadelphia, PA, USA, Vol. 4, Jun. 24-26 1998, pp.2263-2267
[14] W. Ma, H. Peng, “Worst-Case Vehicle Evaluation Methodology-Examples on Truck Rollover/Jackknifing And Active Yaw Control Systems,” Vehicle System Dynamics, Vol. 32, Issue 4 & 5, Nov. 1999 , pp.389-408
[15] K. Tanaka, T. Taniguchi, H.O. Wang, “Trajectory control of an articulated vehicle with triple trailers,” Control Applications, 1999. Proceedings of the 1999 IEEE International Conference on, Kohala Coast, HI, Vol. 2, Aug. 22-27 1999, pp.1673-1678
[16] “SAFE AS25,” http://www.safeeu.com/pdfs/prod_sheet.pdf
[17] T. Kaneko and I. Kageyama, “A study on the braking stability of articulated heavy vehicles,” JSAE Review, Vol. 24, Issue 2, Apr. 2003, pp.157-164
[18] “Anti-jackknifing apparatus for a semitrailer rig,” http://www.patentstorm.us/patents/4720118.html
[19] “Anti-jackknifing mechanism,” http://www.patentstorm.us/patents/5224727.html
[20] “Anti-jackknife apparatus for trailer trucks,” http://www.stickebana.com/scitech/industrial_robot/anti-jackknife_trailer_trucks.html
[21] A. T. Keller, “Jackknife Control for Tractor-Trailer,” SAE International, paper No. 730643, Feb. 1973
[22] D. D.Eisele, H. Peng, “ Vehicle Dynamics Control With Rollover Prevention for Articulated Heavy Trucks,” Proceedings of AVEC 2000 5th Int’l Symposium on Advanced Vehicle Control , Ann Arbor, Michigan, Aug. 22-24 2000
[23] W. Liang, J. Medanic, “Simulation of Intelligent Convoy with Autonomous Articulated Commercial Vehicles,” SAE International, paper No. 2003-01-3419, Nov. 2003
[24] R. McCann, A. Le, “Electric motor based steering for jackknife avoidance in large trucks,” Vehicle Power and Propulsion, 2005 IEEE Conference, Chicago, Illinois, USA, Sept. 7-9 2005, pp.103-109
[25] H. Ohara, T. Murakami, “Tracking control of a compact electrical vehicle trailer based on equivalent dynamics model,” Advanced Motion Control, 2004. AMC '04. The 8th IEEE International Workshop on, Kawasaki, Japan, Mar. 25-28 2004, pp.183-186
[26] E. A. Susemihl, A. I. Krauter, “Jackknifing of Tractor-Semitrailer Trucks: Detection and Corrective Action,” Trans. of the ASME J. of Dynamic System, Measurement and Control, Vo1. 96, No. 2, 1974, pp.244-252.
[27] L. Palkovics, P. Michelberger, J. Bokor, P. Gaspar, “Adaptive Identification for Heavy-Truck Stability Control,” Vehicle System Dynamics, Vol. 25, Issue S1, 1996, pp.502-518
[28] W. Deng, M. Tian, Y.H. Lee, “An adaptive model tracking control for vehicle-trailer system,” Networking, Sensing and Control, 2005. Proceedings. 2005 IEEE, Tucson, Arizona, USA, Mar. 19-22 2005, pp.180-184
[29] M. Tai; M. Tomizuka, “Robust Lateral Control of Heavy Duty Vehicles: Final Report,” California Partners for Advanced Transit and Highways (PATH), Research Reports: Paper UCB-ITS-PRR-2003-24, July 1 2003
[30] Q. Wang, M. Oya, K. Okumura, T. Kobayashi, “Adaptive Steering Controller to Improve Handling Stability of Combined Vehicles,” Innovative Computing, Information and Control, 2007. ICICIC '07. Second International Conference on, Kumamoto,Japan, Sept. 5-7 2007, pp.428-428
[31] 許勝勇,“車輛安全系統研究之大型車輛翻覆預防,” 國立台灣科技大學機械工程系, 2006
[32] 徐錦衍,“以縮小型車輛探討聯結車輛之鐮刀效應預防,” 國立台灣科技大學機械工程學系, 2007
[33] R. G. Longoria, A. Al-Sharif, C. B. Patil, “Scaled vehicle system dynamics and control: A case study in anti-lock braking,” International Journal of Vehicle Autonomous Systems, Vol. 2, No. 1-2, 2004, pp.18-39
[34] W.E. Travis, R.J. Whitehead, D.M. Bevly, G.T. Flowers, “Using scaled vehicles to investigate the influence of various properties on rollover propensity,” American Control Conference, 2004. Proceedings of the 2004, Boston, Massachusetls, USA, Vol. 4, June 30-July 2 2004, pp.3381-3386
[35] S. N. Brennan, “On Size and Control : The Use of Dimension Analysis in Controller Design,” University of Illinois at Urbana-Champaign, Department of Mechanical and Industrial Engineering, Ph.D. Thesis, 2002
[36] P. S. Fancher, A. Mathew, “A vehicle dynamics handbook for single-unit and articulated heavy trucks. Final report,” UMTRI, Report Number: UMTRI-87-27, May 1987
[37] K. S. Narendra, A. M. Annaswamy, “Stable Adaptive Systems,” Prentice-Hall, New Jersey, 1989
[38] A. L. Dunn, “Jackknife Stability of Articulated Tractor Semitrailer Vehicles With High-Output Brakes and Jackknife Detection on Low Coefficient Surfaces,” The Ohio State University, Department of Mechanical Engineering, PhD. Dissertation, 2003

QR CODE