簡易檢索 / 詳目顯示

研究生: 李昆儒
Kun-Ju Lee
論文名稱: 無須力估測器之機械臂無力回授阻抗控制器設計
Force Sensorless Impedance Control of Robot Manipulators without Force Estimators
指導教授: 黃安橋
An-Chyau Huang
口試委員: 藍振洋
Jhen-Yang Lan
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 62
中文關鍵詞: 阻抗控制適應性控制機械手臂無力回授無力估測器
外文關鍵詞: Impedance Control, Force Sensorless, Robot Manipulators, Adaptive Control, Without Force Estimators
相關次數: 點閱:172下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳統的阻抗控制器中,若選擇目標阻抗中的慣性矩陣使之與系統慣性矩陣相同,則可抵銷其中之力回授項,以達到免力回授的目的。但是,系統慣性矩陣是位置向量的函數,隨著機械臂的運動,其內部元素一直在變動;而目標阻抗中的慣性矩陣則是常數矩陣,因此這兩者不可能相等,也就無法完成力回授項的抵銷。傳統上,要免除力回授的麻煩,均要使用力估測器來估算接觸力。本文提出一無須力回授之機械臂阻抗控制器,其主要概念在修改目標阻抗中接觸力的係數矩陣,讓力回授項可以逕行抵銷。新控制器既不需要力感測器,也不使用力估測器,如此一來不僅節省了成本,也使得控制器設計容易許多,在工業上更利於使用與實現。新控制器在自由空間中的追跡性能,與傳統阻抗控制者相同;在受限空間中的軌跡,也與傳統者無異。其僅在接觸力與控制量上,與傳統阻抗控制器不同。但是,藉由選擇目標阻抗中的慣性矩陣,可以改變這兩者的大小,這在實際應用上,並不會造成困擾。另外,本文亦嘗試設計新控制器的適應控制版本,以容忍系統中的諸多不確定項,其結果可作為後續發展之參考。最後,本文以電腦模擬二軸剛性機械臂在平面受限空間的順應運動,來證明此方法的有效性,並與傳統阻抗控制做比較。


    A force sensorless impedance controller is proposed in this thesis for robot manipulators without using force estimators. From the observation of the traditional impedance control law, the force feedback term can be cancelled if the inertia matrix in the target impedance is the same as the robot inertia matrix. However, the inertia matrix in the target impedance is almost always a constant matrix, while the robot inertia matrix is a function of robot configuration, and hence they may not be identical in general. A modification in the target impedance is suggested here to enable cancellation of the force feedback term in the control law so that a force sensorless impedance controller without using force estimators can be obtained. The tracking performance during the free space tracking of the new design is the same as the traditional impedance control, and the contact force induced in the compliant motion phase may be larger or smaller than the traditional design depending on the selection of the inertia matrix in the target impedance. This thesis also attempt to develop an adaptive version of the new controller to tolerate uncertainties in system parameters. The results serve as a good reference for further research. Rigorous mathematical justification in close loop stability is given in detail and computer simulations are performed to verify performance of the proposed designs.

    摘要 I Abstract II 致謝 III 目錄 V 圖片索引 VI 表格索引 VII 第一章 緒論 1 第二章 機械臂控制理論回顧 5 2.1 傳統機械臂控制(Huang and Chien 2010) 5 2.2 Slotine and Li’s 修正方法(Huang and Chien 2010) 8 2.3傳統機械臂阻抗控制(Huang and Chien 2010) 10 2.4 經Slotine and Li修正之阻抗控制(Huang and Chien 2010) 13 第三章 無力回授阻抗控制器設計 16 3.1 SISO機械系統無力回授阻抗控制 16 3.2 機械臂無力回授阻抗控制 19 3.3 機械臂無力回授適應阻抗控制 (一) 20 3.4 機械臂無力回授適應阻抗控制 (二) 22 第四章 模擬驗證 25 4.1模擬架構 25 4.2已知系統下傳統阻抗控制器與新控制器比較 27 4.3無力回授適應阻抗新控制器模擬 35 第五章 結論 38 參考文獻 39 附錄A:二軸機械臂回歸矩陣 43 A.1 用於傳統機械臂適應性控制之回歸矩陣 (用於2.1節) 44 A.2 用於經Slotine and Li’s修正方法之回歸矩陣 (用於2.2節) 44 A.3 用於傳統機械臂適應阻抗控制之回歸矩陣 (用於2.3節) 45 A.4 用於經Slotine and Li’s修正適應阻抗控制之回歸矩陣 (用於2.4節) 46 A.5 用於新設計適應阻抗控制之回歸矩陣 (用於3.3節) 49 A.6 用於經Slotine and Li’s修正新設計適應阻抗控制之回歸矩陣 (用於3.4節) 49

    A. Alcocer, A. Robertsson, A. Valera and R. Johansson, “Force estimation and control in robot manipulators,” IFAC Proc. Volumes, vol. 36, Issue 17, pp. 55-60, 2003.

    F. Alonge, A. Bruno and F. D’Ippolito, “Interaction control of robotic manipulators without force measurement,” IEEE Int. Symposium on Industrial Electronics, pp.3245-3250, 2010.

    H. F. N. Al-Shuka, S. Leonhardt, W.-H. Zhu, R. Song, C. Ding and Y. Li, “Active impedance control of bioinspired motion robotic manipulators: An overview,” Appl. Bionics Biomechanics, 2018.

    J. H. Choi, J. H. Kwak, J. An and S. Oh, “Force sensorless multi-functional impedance control of rehabilitation robot,” IFAC-PapersOnLine, vol. 50, Issue 1, pp. 12077-12082, July 2017.

    A. Dong, Z. Du and Z. Yan, “A sensorless interaction forces estimator for bilateral teleoperation system based on online sparse Gaussian process regression,” Mechanism and Machine Theory, vol. 143, paper no. 103620, 2020.

    K. S. Eom, I. H. Suh, W. K. Chung and S. R. Oh, “Disturbance observer based force control of robot manipulator without force sensor,” IEEE Int. Conf. on Robotics and Automation, pp. 3012-3017, 1998.

    M. S. Erden and T. Tomiyama, “Human-intent detection and physically interactive control of a robot without force sensors,” IEEE Trans. on Robotics, vol. 26, no. 2, pp. 370-382, 2010.

    L. Han, W. Xu, B. Li and P. Kang, “Collision detection and coordinated compliance control for a dual-arm robot without force/torque sensing based on momentum observer,” IEEE/ASME Trans. on Mechatronics, vol. 24, no. 5, pp. 2261-2272, 2019.

    N. Hogan, “Impedance control: an approach to manipulation: Part1-theory, Part2-implementation, Part3-an approach to manipulation,” ASME J. Dynamic System, Measurement, and Control, vol.107, pp.1-24, 1985.

    A. C. Huang and M. C. Chien, Adpaptive Control of Robot Manipulators: A Unified Regressor-free Approach, World Scientific Publishing Co., 2010.

    P. A. Ioannou and J. Sun, Robust Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, 1995.

    M. T. Mason, “Compliance and force control for computer controlled manipulators,” IEEE Trans. Systems, Man and Cybernetics, vol. SMC-11, pp.418-432, 1981.

    T. Murakami, F. Yu and K. Ohnishi, “Torque sensorless control in multi-degree-of-freedom Manipulator,” IEEE Trans. on Industrial Electronics, vol. 40, no. 2, pp. 259-265, 1993.

    G. Peng, C. L. P. Chen, W. He and C. Yang, “Neural learning based force sensorless admittance control for robots with input deadzone,” IEEE Trans. on Industrial Electronics, vol. 68, no. 6, pp. 5184-5196, 2021.

    G. Peng, C. Yang, W. He and C. L. P. Chen, “Force sensorless admittance control with neural learning for robots with actuator saturation,” IEEE Trans. on Industrial Electronics, vol. 67, no. 4, pp. 3138-3148, 2020.

    M. Ragaglia, A. M. Zanchettin, L. Bascetta and P. Rocco, “Accurate sensorless lead-through programming for lightweight robots in structured environments,” Robotics and Computer-Integrated Manufacturing, vol. 39, pp. 9-21, 2016.

    M. H. Raibert and J. J. Craig, “Hybrid Position/Force control of manipulators,” ASME J. Dynamics Systems, Measurements and Control, vol.102, pp.126-133, 1981.

    L. Roveda, A. A. Shahid, N. Iannacci and D. Piga, “Sensorless optimal interaction control exploiting environment stiffness estimation,” IEEE Trans. on Control Systems Technology, Early Access, pp. 1-16, 2021.
    G. Sebastian, Z. Li, V. Crocher, D. Kremers, Y. Tan and D. Oetomo, “Interaction force estimation using extended state observers: an application to impedance-based assistive and rehabilitation robotics,” IEEE Robotics and Auto. Letters, vol. 4, no. 2, pp. 1156-1161, 2019.

    J-J. E. Slotine and W. Li, “On the adaptive control of robotic manipulators,” Int. J. Robotic Research, vol.6, no.3, pp.44-59, 1987.

    J-J. E. Slotine and W. Li, Applied Nonlinear Control, NJ: Prentice-Hall, 1991.

    M. W. Spong and M. Vidyasagar, Robot Dynamics and Control, Wiley, 1989

    S. Tachi, T. Sakaki, H. Arai, S. Nishizawa and J. F. Pelaez-Polo, “Impedance control of a direct-drive manipulator without using force sensors,” Advanced Robotics, vol. 5, Issue 2, pp. 183-205, 2012.

    S. Tungpataratanawong, K. Ohishi, and T. Miyazaki, “Force sensorless workspace impedance control considering resonant vibration of industrial robot,” Proc. IEEE Annual Conf. on Industry Electronics, pp. 1878–1883, 2005.

    M. Van Damme, P. Beyl, B. Vanderborght, V. Grosu, R. Van Ham, I. Vanderniepen, A. Matthys and D. Lefeber, “Estimating robot end-effector force from noisy actuator torque measurements,” IEEE Int. Conf. on Robotics and Automation, pp. 1108-1113, 2011.

    A.Wahrburg, E. Morara, G. Cesari, B. Matthias and H. Ding, “Cartesian contact force estimation for robotic manipulators using Kalman filters and the generalized momentum,” IEEE Int. Conf. on Automation Science and Engineering, pp. 1230-1235, 2015.

    C. Yang, G. Peng, L. Cheng, J. Na and Z. Li, “Force sensorless admittance control for teleoperation of uncertain robot manipulator using neural networks,” IEEE Trans. on Systems, Man and Cybernetics: Systems, vol. 51, no. 5, pp. 3282-3292, 2021.

    J. Yuan, Y. Qian, L. Gao, Z. Yuan and W. Wan, “Position-based impedance force controller with sensorless force estimation,” Assembly Automation, vol. 39, no. 3, pp. 489-496, 2019.

    F. Zeng, J. Xiao, and H. Liu, “Force/torque sensorless compliant control strategy for assembly tasks using a 6-DOF collaborative robot,” IEEE Access, vol. 7, pp. 108795-108805, 2019.

    QR CODE