簡易檢索 / 詳目顯示

研究生: 盧弘智
Hung-Chih Lu
論文名稱: 石墨烯-氧化鋅/超奈米鑽石複合奈米結構之光感測特性
Graphene-ZnO/UNCD hybrid nanostructure for photodetectors
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 黃柏仁
Bohr-Ran Huang
許正良
Cheng-Liang Hsu
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 142
中文關鍵詞: 氧化鋅奈米管石墨烯超奈米結晶鑽石紫外光感測器
外文關鍵詞: ZnO nanotubes, Graphene, UNCD, UV photodetector
相關次數: 點閱:349下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文分為三部分,第一部分探討氧化鋅奈米柱及奈米管之紫外光感測器,及複合石墨烯之氧化鋅奈米柱及奈米管之紫外光感測器,並進行物性及電性分析;第二部分探討在不同成長時間之超奈米結晶鑽石上成長氧化鋅奈米柱及奈米管之紫外光感測影響,並進行物性及電性分析;第三部分探討在不同成長時間之超奈米結晶鑽石上成長複合石墨烯之氧化鋅奈米柱及奈米管之紫外光感測影響,並進行物性及電性分析。
研究發現,氧化鋅奈米管較氧化鋅奈米柱擁有較大的比表面積與空乏區,進而使紫外光感測器之訊雜比提升,其紫外光亮暗響應從230.78提升至1359.62。在氧化鋅晶種層中加入破碎狀石墨烯,成長出石墨烯複合氧化鋅一維奈米結構,產生兩種效應。第一種由破碎石墨烯產生額外之缺陷,而使電子在傳遞中被捕捉而使暗電流下降;第二種為氧化鋅與石墨烯接面產生之效應,因石墨烯像金屬並無能隙,故使氧化鋅表面之電子堆積而使表面能帶更加彎曲,造成暗電流下降,故雜訊比上升,石墨烯-氧化鋅複合奈米柱之紫外光亮暗響應提升為821.91,石墨烯-氧化鋅複合奈米管之紫外光亮暗響應提升為4557.38。
超奈米結晶鑽石為非晶結構,電子會被晶粒邊界所捕捉而電阻較大,且與氧化鋅奈米結構形成p-n接面,而造成暗電流下降,光電流上升,紫外光響應上升,氧化鋅/超奈米鑽石複合奈米柱之紫外光亮暗響應提升為1709.11,氧化鋅/超奈米鑽石複合奈米管之紫外光亮暗響應提升為8686.44。
最後綜合石墨烯與超奈米結晶鑽石之優點與氧化鋅奈米結構結合,以再更提升紫外光響應,石墨烯-氧化鋅/超奈米鑽石複合奈米柱之紫外光亮暗響應提升為5436.60,石墨烯-氧化鋅/超奈米鑽石複合奈米管之紫外光亮暗響應提升為19708.03。


In this study, we report the UV photodetectors (PDs) based on ZnO nanorods (ZNR), ZnO nanotubes (ZNT), graphene-ZNR/ZNT, ultra-nanocrystalline diamond (UNCD)-ZNR/ZNT, graphene-ZNR/UNCD and graphene- ZNT/UNCD. More briefly, we divide this study into three parts. The first part deals with ZNR, ZNT and graphene-ZNR/ZNT based UV PDs. The second part comprises the UV PDs based on ZNR/UNCD and ZNT/UNCD and the third part describes the UV PDs with all the combinations of materials such as graphene-ZNR/UNCD, and graphene-ZNT/UNCD.
From the overall studies, it was revealed that ZNT based UV PDs shows highly enhanced IPhoto/IDark ratio compared to ZNR based PDs. Thus, the ZNT based PDs gives the best ratio of 1359.62 while the PDs based on ZNR only gives 230.78. Similarly, graphene-ZNT based UV PDs exhibits better IPhoto/IDark ratio (4557.38) than graphene-ZNR (821.91). The UV PDs based on ZNT shows striking enhancement in IPhoto/IDark ratios due to their large inner/outer surface area and depletion width compared to ZNR.
Furthermore, the effects of different growing times of ZnO nanostructures (both ZNR and ZNT) with UNCD is also investigated and observed the highly enhanced switch ratios compared to graphene ZNR/ZNT. Thus, the IPhoto/IDark ratio of ZNR/UNCD is 1709.11, while the ZNT/UNCD exhibits 8686.44. In addition, utilizing the comprehensive advantages of graphene and UNCD, the hybrid UV PDs of graphene-ZNR/UNCD exhibits the switching ratio of 5436.60 which is highly better than other ZNR UV PDs in this study. On the other hand, the hybrid UV PDs of graphene-ZNT/UNCD shows the IPhoto/IDark ratio of 19708.03 which is phenomenally better than other ZNR and ZNT based UV PDs in this study. It is because, when the heterojunction is irradiated by the UV light, on the ZnO side, the electrons in the valence band are excited to the conduction band by absorbing the photon with the wavelength of 365 nm, increases the concentration of electrons carriers. On the UNCD side, the build in electric field drives the photogenerated electrons excited to the conduction band. Therefore, the electrons will be excited to the shallow donor level of UNCD which has lower energy gap of about 2.56 eV studied by thermo-luminescence, rather than to the conduction band of diamond with larger bandgap of 5.5 eV, leaving more holes in the valence band of diamond compared to dark. The photogenerated holes shifted to the ZnO valence band, and the photocurrent was thus highly enhanced.

目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅳ 目錄 Ⅴ 圖目錄 X 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 氧化鋅材料特性簡介 4 2.1.1 氧化鋅基本性質與結構 4 2.1.2 氧化鋅發光機制 5 2.1.3 氧化鋅一維結構成長機制簡介 7 2.1.3.1 水熱法成長機制 8 2.1.3.2 化學氣相沉積法 9 2.1.3.3 電化學沉積法 10 2.2 石墨烯特性簡介 11 2.2.1 石墨烯的基本性質與結構 11 2.2.2 石墨烯成長機制與製備方法 13 2.2.2.1 機械剝離法(mechanical exfoliation) 15 2.2.2.2 氧化石墨還原法 15 2.2.2.3 化學氣相沉積法(chemical vapor deposition, CVD) 16 2.2.3 石墨烯的特性 17 2.3 鑽石薄膜之特性簡介 18 2.3.1 鑽石薄膜基本性質及結構 18 2.3.2 (超)奈米鑽石成長機制 19 2.3.3 奈米結晶鑽石 20 2.3.4 超奈米結晶鑽石 21 2.4 紫外光感測器理論 21 2.5 氧化鋅紫外光感測器 22 第三章 實驗方法 24 3.1 實驗設計與流程 24 3.2 製備之材料介紹 26 3.3 基板清洗 27 3.4 水熱法(Hydrothermal method)成長氧化鋅奈米柱與奈米管 28 3.4.1 製備氧化鋅晶種層 28 3.4.2 製備石墨烯-氧化鋅晶種層 29 3.4.2.1 成長石墨烯 29 3.4.2.2 製備石墨烯-氧化鋅晶種層 30 3.4.3 成長氧化鋅奈米柱及奈米管 32 3.5 微波電漿化學氣相沉積法成長奈米結晶鑽石 33 3.6 儀器設備與材料分析方法 35 3.6.1 場發射掃描式電子顯微鏡(FE-SEM) 35 3.6.2 能量分散光譜儀(Energy Dispersive Spectrometer,EDS) 36 3.6.3 X射線繞射儀(X-ray diffraction,XRD) 36 3.6.4 拉曼光譜儀(Raman spectrum) 37 3.6.5 光激發螢光光譜儀(Photoluminescence,PL) 38 3.6.6 霍爾效應量測儀 39 3.6.7 光感測器(Photodetector,PD) 40 第四章 氧化鋅及石墨烯-氧化鋅複合奈米結構之光感測特性 41 4.1 氧化鋅奈米柱之特性分析 41 4.1.1 表面型態分析 41 4.1.2 X-ray繞射儀分析 42 4.1.3 拉曼光譜儀分析 43 4.1.4 光激發螢光頻譜儀分析 44 4.1.5 氧化鋅奈米柱之紫外光感測分析 45 4.2 石墨烯-氧化鋅複合奈米柱之特性分析 49 4.2.1 表面型態分析 49 4.2.2 X-ray繞射儀分析 52 4.2.3 拉曼光譜儀分析 53 4.2.4 光激發螢光頻譜儀分析 55 4.2.5 石墨烯-氧化鋅複合奈米柱之紫外光感測分析 56 4.3 氧化鋅奈米管之特性分析 60 4.3.1 表面型態分析 60 4.3.2 X-ray繞射儀分析 61 4.3.3 拉曼光譜儀分析 62 4.3.4 光激發螢光頻譜儀分析 64 4.3.5 氧化鋅奈米管之紫外光感測分析 66 4.4 石墨烯-氧化鋅複合奈米管之特性分析 69 4.4.1 表面型態分析 69 4.4.2 X-ray繞射儀分析 72 4.4.3 拉曼光譜儀分析 73 4.4.4 光激發螢光頻譜儀分析 75 4.4.5 石墨烯-氧化鋅複合奈米管之紫外光感測分析 76 第五章 氧化鋅/超奈米鑽石複合奈米結構之光感測特性 80 5.1 不同成長時間之超奈米鑽石之特性分析 80 5.1.1 表面型態分析 80 5.1.2 X-ray繞射儀分析 82 5.1.3 拉曼光譜儀分析 82 5.1.4 霍爾量測儀分析 83 5.2 氧化鋅/超奈米鑽石複合奈米柱之特性分析 84 5.2.1 表面型態分析 84 5.2.2 X-ray繞射儀分析 86 5.2.3 拉曼光譜儀分析 87 5.2.4 光激發螢光頻譜儀分析 89 5.2.5 氧化鋅/超奈米鑽石複合奈米柱之紫外光感測分析 90 5.3 氧化鋅/超奈米鑽石複合奈米管之特性分析 95 5.3.1 表面型態分析 95 5.3.2 X-ray繞射儀分析 97 5.3.3 拉曼光譜儀分析 98 5.3.4 光激發螢光頻譜儀分析 100 5.3.5 氧化鋅/超奈米鑽石複合奈米管之紫外光感測分析 101 第六章 石墨烯-氧化鋅/超奈米鑽石複合奈米結構之光感測特性 106 6.1 石墨烯-氧化鋅/超奈米鑽石複合奈米柱之特性分析 106 6.1.1 表面型態分析 106 6.1.2 X-ray繞射儀分析 110 6.1.3 拉曼光譜儀分析 111 6.1.4 光激發螢光頻譜儀分析 113 6.1.5 石墨烯-氧化鋅/超奈米鑽石複合奈米柱之紫外光感測分析 114 6.2 石墨烯-氧化鋅/超奈米鑽石複合奈米管之特性分析 118 6.2.1 表面型態分析 118 6.2.2 TEM分析 122 6.2.3 X-ray繞射儀分析 123 6.2.4 拉曼光譜儀分析 124 6.2.5 光激發螢光頻譜儀分析 126 6.2.6 石墨烯-氧化鋅/超奈米鑽石複合奈米管之紫外光感測分析 127 6.3 不同紫外光感測之穩定度分析 132 第七章 結論與未來展望 133 7.1 結論 133 7.2 未來展望 135 參考文獻 136

參考文獻
[1]. H W Kroto, J R Heath, S C O'Brien, R F Curl and R E Smalley, C60: Buckminsterfullerene, Nature 318 6042 (1985) 162-163.
[2]. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F., Photoinduced electron transfer from a conducting polymer to buckminsterfullerene Science.Nov 27 258 5087 (1992) 1474-1476.
[3]. 陳冠喬 藉表面粗糙度輔助成長氧化鋅奈米線及其發光特性研究 (2012)
[4]. Z. Fan, and J. G. Lu, Proc. IEEE, Nagoya, Japan (2005).
[5]. Z. L. Wang and J. Song, Science 312 (2006) 242.
[6]. Hu JT, Odom TW, Lieber CM, ACC. Chem. Res. 32 (1999) 435.
[7]. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, Appl. Phys. Lett. 81 (2002) 3648.
[8]. J. B. Baxter, A. M. Walker, K. V. Ommering, and E. S. Aydil, Nanotechnology 17 (2006) 304.
[9]. Klingshirn, C.The Luminescence of ZnO under High One‐and Two‐Quantum Excitation. physica status solidi (b) 71.2 (1975) 547-556.
[10]. Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, and Takafumi Yao, Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization 3912 (1998).
[11]. Satbir Singh, Amarpal Singh , and Navneet Kaur, Effect of monomer and polymer capped dyes on the photovoltaic performances of ZnO based solar cells. Technology Letters Vol.3 2 (2016) 9-19.
[12]. JK Dongre, A comparative study on the CDS sensitized and dye-sensitized ZnO photoelectrodes based on solar cell performance. International Journal of Applied Research 3(3) (2017) 504-507.
[13]. Rashi Borgohain, Sunandan Baruah, Design and analysis of UV detector using ZnO nanorods on interdigitated electrodes. AJET, ISSN 4(1) (2016) 2348-7305.
[14]. Jiao Yang, Xing Wang, Rui Xia, Elisée Muhire, Meizhen Gao, Self-assembly in the synthesis of shelled ZnO hollow spheres and their UV sensors performance. Materials Letters 182 (2016) 10–14.
[15]. Xiaolan Deng, Lilan Zhang, Jing Guo, Qinjun Chen, Jianmin Ma, ZnO enhanced NiO-based gas sensors towards ethanol. Materials Research Bulletin 90 (2017) 170–174.
[16]. Yoonki Honga, Chang-Hee Kima, Jongmin Shina, Kyoung Yeon Kimb, Jun Shik Kimc, Cheol Seong Hwangc, Jong-Ho Leea, Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate. Sensors and Actuators B 232 (2016) 653–659.
[17]. Hiwa Hossaini, Gholamreza Moussavi, Mehrdad Farrokhi, Oxidation of diazinon in cns-ZnO/LED photocatalytic process: Catalyst preparation, photocatalytic examination, and toxicity bioassay of oxidation by-products. Separation and Purification Technology 174 (2017) 320–330.
[18]. Nae-Man Park, Munsik Oh, Yun-Been Na, Woo-Seok Cheong, Hyunsoo Kim, Sputter deposition of Sn-doped ZnO/Ag/Sn-doped ZnO transparent contact layer for GaN LED applications. Materials Letters 180 (2016) 72–76.
[19]. Morkoç, Hadis, and Ümit Özgür. General properties of ZnO. Zinc Oxide Fundamentals, Materials and Device Technology (2009) 1-76.
[20]. D Bao, H Gu, A Kuang, Sol-gel-derived c-axis oriented ZnO thin films,Thin solid films,312 (1998) 37-39.
[21]. K. Vanheusden et al, Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics (1996).
[22]. Lin, Bixia, Zhuxi Fu, and Yunbo Jia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters 79.7 (2001): 943-945.
[23]. Xu, P. S., et al. The electronic structure and spectral properties of ZnO and its defects. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 199 (2003): 286-290.
[24]. Lima, S. A. M., et al. Luminescent properties and lattice defects correlation on zinc oxide. International Journal of Inorganic Materials 3.7 (2001): 749-754.
[25]. Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang, Nanobelts of Semiconducting Oxides, Science 291 (2001) 1947-1949.
[26]. Longxing Su et al, High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction, Appl. Phys. Lett. 105 (2014) 072106.
[27]. Shahin K. Shaikh et al, Chemical bath deposited ZnO thin film based UV photoconductive detector, Journal of Alloys and Compounds 664 (2016) 242-249.
[28]. Longxing Su et al, High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction, Appl. Phys. Lett. 105 (2014) 072106.
[29]. Adib Abou Chaaya et al, ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications, J. Mater.
[30]. Vergés, M. Andrés, A. Mifsud, and C. J. Serna. Formation of rod-like zinc oxide microcrystals in homogeneous solutions. Journal of the Chemical Society, Faraday Transactions86.6 (1990) 959-963.
[31]. Vayssieres, Lionel, et al. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. The Journal of Physical Chemistry B105.17 (2001) 3350-3352.
[32]. Y.H. Yang et al, ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement, Chem. Phys. Lett. 252 (2005) 248-251.
[33]. Wagner, R. S., and W. C. Ellis. Vapor‐liquid‐solid mechanism of single crystal growth. Applied Physics Letters (1964) 89-90.
[34]. 葉秉昀, 電鍍法治被準直排列ZnO奈米結構陣列及其特性研究 ,碩士論文, 化學工程與材料工程研究所, 國立中央大學, 桃園, (2010).

[35]. A. K. Geim, K. S. Novoselov. The rise of graphene Nature Mater 6 183 (2007).
[36]. http://en.wikipedia.org/wiki/Graphen.
[37]. 朱宏偉,石墨烯:單元子層二維碳晶體-2010年諾貝爾物理獎簡介 自然雜誌 32(6) (2010) 326-331.
[38]. K.S.Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, Y.Zhang, S.V.Dubonos, I.V.Grigorieva, A.firsov.Electric, Field Effect in Atomically Thin Carbon Films. Science 306 (2004) 666-669.
[39]. Xiaobei Zang, Peixu Li, Qiao Chen1, Kunlin Wang, Jinquan Wei, Dehai Wu and Hongwei Zhu, Evaluation of layer-by-layer graphene structures as supercapacitor electrode materials J. Appl. Phys. 115 (2014) 024305.
[40]. Guangmin Zhou, Songfeng Pei, Lu Li, Da-Wei Wang, Shaogang Wang, Kun Huang, Li-Chang Yin, Feng Li, Hui-Ming Cheng, A Graphene–Pure‐Sulfur Sandwich Structure for Ultrafast, Long‐Life Lithium–Sulfur Batteries Adv. Mater. 26 (2014) 625–631.
[41]. B. C. Brodie et al., Philos. Trans. R. Soc. London, On the atomic weight of graphite Journal Article 149 (1959) 249.
[42]. W.S Hummers, R.E Offeman, J. Am. Chem. Soc., Preparation of Graphitic Oxide ACS Publications 80 (1958) 1339-1339.
[43]. Y. Xu et al., J. Am. Chem. Soc., Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets ACS Publications 130 (2008) 5856.
[44]. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai. Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotech 3 (2008) 538-542.
[45]. http://newsletter.sinica.edu.tw/file/file/61/6133.pdf.
[46]. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146 (2008) 351-355.
[47]. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau,Superior thermal; Conductivity of single-layer graphene. Nano Lett 8 (2008) 902-907.
[48]. Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi & Byung Hee Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes Nature 457 (2009) 706-71.
[49]. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Fine Structure Constant Defines Visual Transparency of Graphene Science 320 5881 (2008) 1308.
[50]. S.Matusumoto, Y.Sato, M.Kamo, and N.Setaka, Vapor Depositiion of Diamond Particles from Methane Japanese J.Appl. Phys. (1992) 1562.
[51]. Lin, C. R., et al. Development of high-performance UV detector using nanocrystalline diamond thin film. International Journal of Photoenergy (2014) 2014.
[52]. Suneet Arora, V.D. Vankar, Field emission characteristics of microcrystalline diamond films:Effect of surface coverage and thickness Thin Solid Films (2006) 1963.
[53]. S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park IEEE (1996) 526.
[54]. 曾世凱, 氧化鋅一維結構成長、元件組裝及紫外光偵測器製作之研究, 博士論文, 國立成功大學材料科學及工程學系 (2012).
[55]. Simon M. Sze and Ming-Kwei Lee, Semiconductor devices: Physics and technology, John Wiley & Sons, New York (1985).
[56]. Yasutaka Takahashi et al, Photoconductivity of ultrathin zinc oxide film, Jpn. J. Appl. Phys. 33 (1994) 6611.
[57]. C. Soci et al, ZnO nanowire UV photodetectors with high internal gain, Nano Lett. 7 (2007) 1003-1009.
[58]. Yizheng Jin et al, Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles, Nano Letters 8 (2008) 1649.
[59]. L. Liao et al, Size Dependence of Gas Sensitivity of ZnO Nanorods, J. Phys. Chem. C. 111 (2007) 1900-1903.
[60]. Mohammad R. Alenezi, Simon J. Henley and S. R. P. Silva, On-chip Fabrication of High Performance Nanostructured ZnO UV Detectors, SCIENTIFIC REPORTS 5 (2015) 8516.
[61]. 國立台灣科技大學X光繞射儀實驗室
[62]. 國立台灣科技大學X光繞射儀實驗室
[63]. 國立台灣科技大學材料科學與工程系,顯微拉曼光譜儀標準操作流程
[64]. https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwjl1YLV5ZTUAhXGJJQKHThACokQFghDMAM&url=http%3A%2F%2Fwww.lcis.com.tw%2Fpaper_store%2Fpaper_store%2F%25E9%259C%258D%25E7%2588%25BE%25E6%2595%2588%25E6%2587%2589%25E9%2587%258F%25E6%25B8%25AC%25E5%25AF%25A6%25E9%25A9%2597-201552982530281.pdf&usg=AFQjCNEha-2lFX1CvdpBnglzcHgvVJNEiQ
[65]. T.C. Damen, S.P.S. Porto, B. Tell,Raman effect in zinc oxide,Physical Review, 142 (1966) 570-574.
[66]. Y. J. Xing, Z. H.Xi, Z.Q.Xue, X. D. Zhang, J.H.Song, R. M. Wang, J. Xu, Y. Song, S. L. Zang, and D. P. Yu,Optical properties of the ZnO nanotubes.
[67]. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett.97 187401 (2006).
[68]. W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen, S. S. Pei. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensors and Actuators B 150 (2010) 296–300.
[69]. Faezeh Karegar et al, Light-Emitting n-ZnO Nanotube/n+-GaAs Heterostructures Processed at Low Temperatures, IEEE PHOTONICS TECHNOLOGY LETTERS 27 (2015) 1041-1135.
[70]. Sankaran, Kamatchi Jothiramalingam, et al. Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment. ACS applied materials & interfaces 6 16 (2014) 14543-14551.
[71]. Dandan Sang, Hongdong Li, Shaoheng Cheng, Qiliang Wang, Junsong Liu, Qinglin Wang, Shuang Wang, Chong Han, Kai Chena, Yuewu Pan, Ultraviolet photoelectrical properties of a n-ZnO nanorods/p-diamond heterojunction RSC Adv.5 (2015) 49211–49215.

QR CODE