簡易檢索 / 詳目顯示

研究生: 鄭維昕
Wei-Hsin Cheng
論文名稱: 石墨烯電流散佈層應用於深紫外光發光二極體之光電特性研究
Preparation of graphene as current spreading layer on UV-C light-emitting diodes
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 陳衛國
Wei-Guo Chen
郭東昊
Dung-Hau Kuo
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 101
中文關鍵詞: 氮化物之深紫外光發光二極體石墨烯
外文關鍵詞: UVC-LED, graphene
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯是碳原子依六角形排列之二維材料,具有高電子遷移率、熱傳導度、機械特性與低片電阻等特性,相較於氧化銦錫,單層石墨烯在波長小於 280 nm下依舊維持>90 %之高穿透率,使其成為應用於深紫外光 LED 之透明導電層最有潛力之材料。本研究首先針對石墨烯/p-Al0.21Ga0.79N 薄膜進行特徵接觸電阻量測,由傳輸線模型計算其特徵接觸電阻為 1.19×10-3 Ω-cm2。具石墨烯電極之 UVC-LED 相較傳統鎳金電極,於注入電流 100 mA 下發光強度提升了 1.3 倍。為提高發光強度,更進一步提出兩種方法製作網狀石墨烯。(1)首先製作直徑約 78 nm 之陽極氧化鋁遮罩,配合氧電漿蝕刻製程製作網狀石墨烯。然而因陽極氧化鋁遮罩與石墨烯存有縫隙造成電漿側蝕嚴重,再加上高阻率之 p-AlGAN 導致無法量測到電致發光光譜。(2)另一方法為沉積薄鎳層,配合高溫製程使鎳層形成奈米粒,此方法製備之網狀石墨烯其電阻率只有 171 Ω-cm,拉曼光譜分析指出 ID/IG=0.66、FWHM2D=37.5 cm-1,部分石墨烯被鎳奈米粒破壞但仍維持二維結構。於注入電流105 mA 下,具鎳奈米粒/石墨烯組成之網狀電極比傳統快速退火後鎳金電極之深紫外光發光二極體強度增加 35 倍。


    Graphene is a two-dimensional carbon material with hexagonal crystalline lattice. It has low sheet resistance, high carrier mobility, thermal conductivity, and mechanical properties. Graphene has more than 90% transmittance at wavelengths less than 280 nm, making it a promising candidate as a transparent conductive layer on UVC-LEDs.
    To begin, the bulk p-Al0.21Ga0.79N is used to determine the specific contact resistance with graphene. The calculation from the Transmission Line Model will be 1.9×10-3 Ω-cm2. At 100 mA of injection current, the emission intensity of graphene contact is 1.3 times that of traditional Ni/Au contact. To achieve even higher intensity, we propose two methods for making the mesh graphene. (1) Using Anodic Aluminum Oxide (AAO) with 78 nm pore diameter as an O2-plasma etching mask. Nevertheless, inevitable gaps exist between AAO and graphene cause severe plasma side-etching. Because of the high resistivity of p-AlGaN, we were unable to measure the Electroluminescence (EL) spectrum relationship. (2) Depositing nickel film followed by the Rapid Thermal process (RTP) process to creat metal nano-dots on graphene with resistivity of 171 Ω-cm. Raman spectrum reveals its ID/IG=0.66 and FWHM2D=37.5 cm-1 indicating that only parts of graphene are damaged. The EL peak intensity of UVC-LED with nickel nano-dots/graphene hybrid contact is 35 times higher than the sample with traditional Ni/Au contact at 105 mA of injection current.

    摘要 I Abstract II 總目錄 IV 圖目錄 VI 表目錄 XIII 第一章 序論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 UVC-LED發展概況 4 2.1.1 結構缺陷 4 2.1.2 介面電流傳輸 12 2.1.3 介面特性 17 2.2 石墨烯發展概況 20 2.2.1 石墨烯製備方法 20 2.2.2 網狀石墨烯製備 23 2.2.3 P型氮化物透明導電層之選擇 29 第三章 實驗方法 37 3.1 實驗流程架構 37 3.1.1 陽極氧化鋁遮罩製作 38 3.1.2 傳統轉貼法製備石墨烯 39 3.1.3 網狀石墨烯製作 40 3.1.4 電性量測 41 3.2 實驗設備簡介 42 3.2.1 製程設備 42 3.2.2 光電材料特性分析設備 44 第四章 結果與討論 48 4.1 石墨烯/P型氮化鋁鎵電性研究 48 4.1.1 P型氮化鋁鎵基本性質分析 48 4.1.2 電極接觸電阻之研究 50 4.2 網狀石墨烯製備 55 4.2.1 優化轉貼石墨烯品質 55 4.2.2 利用陽極氧化鋁遮罩製備網狀石墨烯電極 58 4.2.3 具鎳奈米粒/石墨烯混成網狀石墨烯電極製備 64 4.3 網狀石墨烯於UVC-LED之光特性研究 69 第五章 結論 78

    1. M. Biasin, A. Bianco, G. Pareschi, A. Cavalleri, C. Cavatorta, C. Fenizia, P. Galli, L. Lessio, M. Lualdi, and E. Tombetti, UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication, Sci. Rep.(2021). 11, p.1.
    2. M. Kneissl, A brief review of III-nitride UV emitter technologies and their applications, III-nitride ultraviolet emitters.(2016). p.1.
    3. M. Kneissl and J. Rass, III-Nitride ultraviolet emitters. (Springer, 2016).
    4. M. E. Darnell, K. Subbarao, S. M. Feinstone, and D. R. Taylor, Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV, Journal of virological methods.(2004). 121, p.85.
    5.http://www.semiconductor-today.com/news_items/2021/Feb/yole-piseo-150221.shtml,
    6.https://www.i-micronews.com/products/uv-leds-market-and-technology-trends-2020/?cn-reloaded=1,
    7. https://www.mordorintelligence.com/industry-reports/uv-led-market,
    8. T.-C. Hsu, Y.-T. Teng, Y.-W. Yeh, X. Fan, K.-H. Chu, S.-H. Lin, K.-K. Yeh, P.-T. Lee, Y. Lin, and Z. Chen, presented at the Photonics, 2021 (unpublished).
    9. H. Hirayama, Growth of (In) AlGaN compound semiconductors and their application to 300-nm-band high-intensity UV-LEDs, The Review of Laser Engineering.(2002). 30, p.308.
    10. J.-S. Park, J. K. Kim, J. Cho, and T.-Y. Seong, Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency, ECS Journal of Solid State Science and Technology.(2017). 6, p.Q42.
    11.http://www.semiconductor-today.com/news_items/2022/apr/nipponsanso-070422.shtml,
    12. A. Pandey, J. Gim, R. Hovden, and Z. Mi, An AlGaN tunnel junction light emitting diode operating at 255 nm, Appl. Phys. Lett.(2020). 117, p.241101.
    13. C. J. Zollner, A. Almogbel, Y. Yao, B. K. Saifaddin, F. Wu, M. Iza, S. P. Denbaars, J. S. Speck, and S. Nakamura, Reduced dislocation density and residual tension in AlN grown on SiC by metalorganic chemical vapor deposition, Appl. Phys. Lett.(2019). 115, p.161101.
    14. C.-Y. Huang, C.-L. Tsai, C.-Y. Huang, R.-Y. Yang, Y. S. Wu, H.-W. Yen, and Y.-K. Fu, Efficiency improvement analysis of nano-patterned sapphire substrates and semi-transparent superlattice contact layer in UVC light-emitting diodes, Appl. Phys. Lett.(2020). 117, p.261102.
    15. W. Luo, B. Liu, Z. Li, F. Yang, Z. Li, Q. Yang, H. Gao, K. Wang, and R. Zhang, Improvement of the interfaces in AlGaN/AlN superlattice grown by NH3 flow-rate modulation epitaxy, Appl. Phys. Express.(2019). 13, p.015511.
    16. H. Hu, B. Tang, H. Wan, H. Sun, S. Zhou, J. Dai, C. Chen, S. Liu, and L. J. Guo, Boosted ultraviolet electroluminescence of InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array, Nano Energy.(2020). 69, p.104427.
    17. B. K. Saifaddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. Denbaars, and J. S. Speck, AlGaN deep-ultraviolet light-emitting diodes grown on SiC substrates, ACS Photonics.(2020). 7, p.554.
    18. C. He, W. Zhao, H. Wu, N. Liu, S. Zhang, J. Li, C. Jia, K. Zhang, L. He, and Z. Chen, Fast growth of crack-free thick AlN film on sputtered AlN/sapphire by introducing high-density nano-voids, J. Phys. D: Appl. Phys.(2020). 53, p.405303.
    19. H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire, Appl. Phys. Lett.(2007). 91, p.071901.
    20. Z. Zhang, M. Kushimoto, T. Sakai, N. Sugiyama, L. J. Schowalter, C. Sasaoka, and H. Amano, A 271.8 nm deep-ultraviolet laser diode for room temperature operation, Appl. Phys. Express.(2019). 12, p.124003.
    21. M. A. Bergmann, J. Enslin, R. Yapparov, F. Hjort, B. Wickman, S. Marcinkevičius, T. Wernicke, M. Kneissl, and Õ. Haglund, Electrochemical etching of AlGaN for the realization of thin-film devices, Appl. Phys. Lett.(2019). 115, p.182103.
    22. D. Liu, S. J. Cho, J. Park, J. Gong, J.-H. Seo, R. Dalmau, D. Zhao, K. Kim, M. Kim, and A. R. Kalapala, 226 nm AlGaN/AlN UV LEDs using p-type Si for hole injection and UV reflection, Appl. Phys. Lett.(2018). 113, p.011111.
    23. T.-Y. Wang, W.-C. Lai, S.-Y. Sie, S.-P. Chang, Y.-R. Wu, Y.-Z. Chiou, C.-H. Kuo, and J.-K. Sheu, AlGaN-based deep ultraviolet light emitting diodes with magnesium delta-doped AlGaN last barrier, Appl. Phys. Lett.(2020). 117, p.251101.
    24. C. Xing, H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, and H. Sun, Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with step-like quantum barriers, IEEE J. Quantum Electron.(2019). 56, p.1.
    25. J. Wang, M. Wang, F. Xu, B. Liu, J. Lang, N. Zhang, X. Kang, Z. Qin, X. Yang, and X. Wang, Sub-nanometer ultrathin epitaxy of AlGaN and its application in efficient doping, Light Sci. Appl.(2022). 11, p.1.
    26. V. Fan Arcara, B. Damilano, G. Feuillet, S. Vézian, K. Ayadi, S. Chenot, and J.-Y. Duboz, Ge doped GaN and Al0. 5Ga0. 5N-based tunnel junctions on top of visible and UV light emitting diodes, J. Appl. Phys.(2019). 126, p.224503.
    27. W.-C. Ke, Z.-Y. Liang, C.-Y. Yang, Y.-T. Chan, and C.-Y. Jiang, Improved conversion efficiency of InN/p-GaN heterostructure solar cells with embedded InON quantum dots, Appl. Phys. Lett.(2016). 108, p.061603.
    28. W.-C. Ke, F.-W. Lee, C.-Y. Yang, W.-K. Chen, and H.-P. Huang, Trap-assisted tunneling in aluminum-doped ZnO/indium oxynitride nanodot interlayer Ohmic contacts on p-GaN, J. Appl. Phys.(2015). 118, p.155303.
    29. Z. Hu, X. Li, and Y. Zhang, presented at the IOP Conf. Ser.: Mater. Sci. Eng., 2020.
    30. X. Peng, W. Guo, H. Xu, L. Chen, Z. Yang, L. Xu, J. Liu, K. Tang, C. Guo, and L. Yan, Significantly boosted external quantum efficiency of AlGaN-based DUV-LED utilizing thermal annealed Ni/Al reflective electrodes, Appl. Phys. Express.(2021). 14, p.072005.
    31. S. P. R. Mallem, W.-H. Ahn, J.-H. Lee, and K.-S. Im, Influence of Thermal Annealing on the PdAl/Au Metal Stack Ohmic Contacts to p-AlGaN, Crystals.(2020). 10, p.1091.
    32. T. Passow, R. Gutt, M. Maier, W. Pletschen, M. Kunzer, R. Schmidt, J. Wiegert, D. Luick, S. Liu, and K. Köhler, presented at the Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XIV, 2010 (unpublished).
    33. S. Feng, B. Dong, Y. Lu, L. Yin, B. Wei, J. Wang, and S. Lin, Graphene/p-AlGaN/p-GaN electron tunnelling light emitting diodes with high external quantum efficiency, Nano Energy.(2019). 60, p.836.
    34. Y. L. Zhong, Z. Tian, G. P. Simon, and D. Li, Scalable production of graphene via wet chemistry: progress and challenges, Mater. Today.(2015). 18, p.73.
    35. W. Cai, Y. Zhu, X. Li, R. D. Piner, and R. S. Ruoff, Large area few-layer graphene/graphite films as transparent thin conducting electrodes, Appl. Phys. Lett.(2009). 95, p.123115.
    36. Y. Wang, F. Qing, Y. Jia, Y. Duan, C. Shen, Y. Hou, Y. Niu, H. Shi, and X. Li, Synthesis of large-area graphene films on rolled-up Cu foils by a “breathing” method, Chemical Engineering Journal.(2021). 405, p.127014.
    37. V. H. Vivas, M. C. Flores, W. P. Jesus, A. S. Ferlauto, T. H. R. Da Cunha, and K. C. De Souza Figueiredo, Chemical vapor deposition graphene transfer onto asymmetric PMMA support, J. Appl. Polym. Sci.(2022). 139, p.51590.
    38. J. H. Cho, S. R. Na, S. Park, D. Akinwande, K. M. Liechti, and M. A. Cullinan, Controlling the number of layers in graphene using the growth pressure, Nanotechnology.(2019). 30, p.235602.
    39. A. Sangar, A. Merlen, P. Torchio, S. Vedraine, F. Flory, L. Escoubas, L. Patrone, G. Delafosse, V. Chevallier, and E. Moyen, Fabrication and characterization of large metallic nanodots arrays for organic thin film solar cells using anodic aluminum oxide templates, Sol. Energy Mater. Sol. Cells.(2013). 117, p.657.
    40. C. Y. Han, G. A. Willing, Z. Xiao, and H. H. Wang, Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching, Langmuir.(2007). 23, p.1564.
    41. W.-J. Ho, P.-Y. Cheng, and K.-Y. Hsiao, Plasmonic silicon solar cell based on silver nanoparticles using ultra-thin anodic aluminum oxide template, Appl. Surf. Sci.(2015). 354, p.25.
    42. M. Jung, J.-H. Kim, and Y.-W. Choi, Preparation of anodic aluminum oxide masks with size-controlled pores for 2D plasmonic nanodot arrays, J. Nanomater.(2018). 2018,
    43. H.-J. Kim and D.-E. Kim, Frictional behavior of Ag nanodot-pattern fabricated by thermal dewetting, Surf. Coat. Technol.(2013). 215, p.234.
    44. N. J. Ray, J.-H. Yoo, S. Baxamusa, H. T. Nguyen, S. Elhadj, and E. Feigenbaum, Tuning gold nanoparticle size with fixed interparticle spacing in large-scale arrays: implications for plasmonics and nanoparticle etching masks, ACS Appl. Nano Mater.(2021). 4, p.2733.
    45. L. Kong, S. Y. Chiam, and W. K. Chim, Metal-Assisted Silicon Chemical Etching Using Self-Assembled Sacrificial Nickel Nanoparticles Template for Antireflection Layers in Photovoltaic and Light-Trapping Devices, ACS Appl. Nano Mater.(2019). 2, p.7025.
    46. J. Xu, W. Zhang, M. Peng, J. Dai, and C. Chen, Light-extraction enhancement of GaN-based 395 nm flip-chip light-emitting diodes by an Al-doped ITO transparent conductive electrode, Opt. Lett.(2018). 43, p.2684.
    47. Y. J. Sung, M.-S. Kim, H. Kim, S. Choi, Y. H. Kim, M.-H. Jung, R.-J. Choi, Y.-T. Moon, J.-T. Oh, and H.-H. Jeong, Light extraction enhancement of AlGaN-based vertical type deep-ultraviolet light-emitting-diodes by using highly reflective ITO/Al electrode and surface roughening, Opt. Express.(2019). 27, p.29930.
    48. J. Zhu, T. Zhang, Y. Yang, and R. Huang, A comprehensive review on emerging artificial neuromorphic devices, Appl. Phys. Rev.(2020). 7, p.011312.
    49. I. Cisneros-Contreras, A. Muñoz-Rosas, and A. Rodríguez-Gómez, Resolution improvement in Haacke's figure of merit for transparent conductive films, Results Phys.(2019). 15, p.102695.
    50. G. Haacke, New figure of merit for transparent conductors, J. Appl. Phys.(1976). 47, p.4086.
    51. T. H. Seo, K. J. Lee, A. H. Park, C.-H. Hong, E.-K. Suh, S. J. Chae, Y. H. Lee, T. V. Cuong, V. H. Pham, and J. S. Chung, Enhanced light output power of near UV light emitting diodes with graphene/indium tin oxide nanodot nodes for transparent and current spreading electrode, Opt. Express.(2011). 19, p.23111.
    52. J.-P. Shim, M. Choe, S.-R. Jeon, D. Seo, T. Lee, and D.-S. Lee, InGaN-based p–i–n solar cells with graphene electrodes, Appl. Phys. Express.(2011). 4, p.052302.
    53. L. Lin, Y. Ou, X. Zhu, E. Stamate, K. Wu, M. Liang, Z. Liu, X. Yi, B. Herstrøm, and A. Boisen, InGaN/GaN ultraviolet LED with a graphene/AZO transparent current spreading layer, Optical Materials Express.(2018). 8, p.1818.
    54. B.-J. Kim, C. Lee, Y. Jung, K. Hyeon Baik, M. A. Mastro, J. K. Hite, C. R. Eddy Jr, and J. Kim, Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes, Appl. Phys. Lett.(2011). 99, p.143101.
    55. B.-J. Kim, G. Yang, H.-Y. Kim, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, GaN-based ultraviolet light-emitting diodes with AuCl 3-doped graphene electrodes, Opt. Express.(2013). 21, p.29025.
    56. T. Hoon Seo, B. Kyoung Kim, G. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes, Appl. Phys. Lett.(2013). 103, p.051105.
    57. S. Chandramohan, K. Bok Ko, J. Han Yang, B. Deul Ryu, Y. Katharria, T. Yong Kim, B. Jin Cho, and C.-H. Hong, Performance evaluation of GaN light-emitting diodes using transferred graphene as current spreading layer, J. Appl. Phys.(2014). 115, p.054503.
    58. J.-P. Shim, T. Hoon Seo, J.-H. Min, C. Mo Kang, E.-K. Suh, and D.-S. Lee, Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes, Appl. Phys. Lett.(2013). 102, p.151115.
    59. https://www.renishaw.com.tw/tw/raman-spectroscopy-in-more-detail--25806,
    60. L. Malard, M. A. Pimenta, G. Dresselhaus, and M. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep.(2009). 473, p.51.
    61. A. Das, B. Chakraborty, and A. Sood, Raman spectroscopy of graphene on different substrates and influence of defects, Bull. Mater. Sci.(2008). 31, p.579.
    62. J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis. (Springer, 2017).
    63. O. Wells and P.-C. Chengl, presented at the X-Ray Microscopy II: Proceedings of the International Symposium, Brookhaven, NY, August 31–September 4, 1987, 2013.
    64. Zumdahl, S. S. Chemical Principles, 5th edition; Houghton Mifflin Company: Boston, 2005; p. 771-774.,
    65. M. Jayasakthi, R. Ramesh, P. Arivazhagan, R. Loganathan, K. Prabakaran, M. Balaji, and K. Baskar, Structural and optical characterization of AlGaN/GaN layers, J. Cryst. Growth.(2014). 401, p.527.
    66. S. K. Jana, P. Mukhopadhyay, S. Ghosh, S. Kabi, A. Bag, R. Kumar, and D. Biswas, High-resolution X-ray diffraction analysis of AlxGa1− xN/InxGa1− xN/GaN on sapphire multilayer structures: Theoretical, simulations, and experimental observations, J. Appl. Phys.(2014). 115, p.174507.
    67. S.-J. Lee, S.-H. Han, C.-Y. Cho, S. Lee, D. Noh, H.-W. Shim, Y. C. Kim, and S.-J. Park, Improvement of GaN-based light-emitting diodes using p-type AlGaN/GaN superlattices with a graded Al composition, J. Phys. D: Appl. Phys.(2011). 44, p.105101.
    68. P. Kruszewski, P. Prystawko, I. Kasalynas, A. Nowakowska-Siwinska, M. Krysko, J. Plesiewicz, J. Smalc-Koziorowska, R. Dwilinski, M. Zajac, and R. Kucharski, AlGaN/GaN HEMT structures on ammono bulk GaN substrate, Semicond. Sci. Technol.(2014). 29, p.075004.
    69. D. Wallis, D. Zhu, F. Oehler, S. Westwater, A. Pujol, and C. Humphreys, Measuring the composition of AlGaN layers in GaN based structures grown on 150 mm Si substrates using (2 0 5) reciprocal space maps, Semicond. Sci. Technol.(2013). 28, p.094006.
    70. B. T. Tran and H. Hirayama, Growth and fabrication of high external quantum efficiency AlGaN-based deep ultraviolet light-emitting diode grown on pattern Si substrate, Sci. Rep.(2017). 7, p.1.
    71. B. T. Tran, H. Hirayama, N. Maeda, M. Jo, S. Toyoda, and N. Kamata, Direct growth and controlled coalescence of thick AlN template on micro-circle patterned Si substrate, Sci. Rep.(2015). 5, p.1.
    72. J. Yan, J. Wang, P. Cong, L. Sun, N. Liu, Z. Liu, C. Zhao, and J. Li, Improved performance of UV‐LED by p‐AlGaN with graded composition, physica status solidi C.(2011). 8, p.461.
    73. G. Reeves and H. Harrison, Obtaining the specific contact resistance from transmission line model measurements, IEEE Electron Device Lett.(1982). 3, p.111.
    74. C. Shen, X. Yan, F. Qing, X. Niu, R. Stehle, S. S. Mao, W. Zhang, and X. Li, Criteria for the growth of large-area adlayer-free monolayer graphene films by chemical vapor deposition, J. Materiomics.(2019). 5, p.463.
    75. Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, Toward the synthesis of wafer-scale single-crystal graphene on copper foils, ACS Nano.(2012). 6, p.9110.
    76. J. Thapa, B. Liu, S. D. Woodruff, B. T. Chorpening, and M. P. Buric, Raman scattering in single-crystal sapphire at elevated temperatures, Appl. Opt.(2017). 56, p.8598.
    77. M. Kuball, Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control, Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films.(2001). 31, p.987.
    78. W. Li, G. Cheng, Y. Liang, B. Tian, X. Liang, L. Peng, A. H. Walker, D. J. Gundlach, and N. V. Nguyen, Broadband optical properties of graphene by spectroscopic ellipsometry, Carbon.(2016). 99, p.348.

    無法下載圖示 全文公開日期 2025/12/03 (校內網路)
    全文公開日期 2025/12/03 (校外網路)
    全文公開日期 2025/12/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE