簡易檢索 / 詳目顯示

研究生: 潘大禹
Ta-yu Pan
論文名稱: 變曲率運動模型於線驅動連續型機器人之比較研究
Variable-Curvature Kinematic Models for Wire-Actuated Continuum Robots: A Comparative Study
指導教授: 郭進星
Chin-Hsing KUO
口試委員: 林其禹
Chyi-Yeu Lin
史建中
Shih, Chien-Jong
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 偽剛體模型橢圓積分歐拉-伯努力樑連續型機器人非線性樣條理論位置分析
外文關鍵詞: pseudo rigid body model, elliptic integral, Euler-Bernoulli beam, continuum robots, nonlinear spline theory, position analysis
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討一種由兩條皆可推拉之超彈性纜線與雙平板組成的平面線驅動連續型機器人,在已知兩條纜線推拉長度之條件下,我們將兩條纜線視為兩個大變形之歐拉-伯努力樑(Euler-Bernoulli beam),探討末端效應器在此輸入條件下的位置與方位。研究首先比較橢圓積分(Elliptic integral)、偽剛體模型(Pseudo rigid body model)與非線性樣條理論(Nonlinear spline theory)等三種計算歐拉-伯努力樑變形之準確性與計算時間。然後,根據上述比較結果,運用其中最適用於即時(real-time)控制的偽剛體模型法,計算平面雙線驅動之連續型機器之順向位移分析,即當兩條纜線之長度為已知,求得末端效應器的位置及方位。接著建立實驗平台,以NDI Aurora電磁式追跡系統量測末端效應器之位置與方位,比較理論模型與實際量測的誤差,同時以荷重元量測纜線在驅動端的推力及拉力,並對誤差造成原因進行討論。研究結果顯示,偽剛體模型法所推導得到的位移解與實驗量測值相去不遠,應可適用於平面連續型機器人的運動學求解。本文之產出,可為線驅動連續型機器人之運動分析選用提供一個良好的依據。


    This thesis studies the displacement and error analyses of a planar wire-driven continuum robot made up of two superelastic wires, one moveable disk fixed to the wires, and one grounded disk. The wires here are formulated by using the Euler-Bernoulli beam theory. First, a comparative study on the three analytical methods for formulating the deformation of Euler-Bernoulli beam, i.e., the elliptic integral, pseudo rigid body model, and nonlinear spline theory, is carried out. The computational effort and accuracy via these three methods are compared. Accordingly, owing to its potential excellence for real-time control, the pseudo rigid body model is employed to analyze the forward kinematics of the planar wire driven continuum robot. That is, the lengths of the two wires are known, and the position and orientation of the end-effector are to be determined. An experimental platform is established for validating the accuracy of the developed analytical model. In this platform, the NDI Aurora electromagnetic tracking system is used for measuring the location of the end-effector, while the load cells are attached in the distal ends of the wires for sensing the pushing and pulling forces of the wires. The results show that the pseudo rigid body model can provide a satisfied accuracy for the forward kinematics analysis of the robot. In conclusion, the output of this work provides a good basis for the analysis of planar continuum wire driven robots.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究動機 2 1.2 文獻回顧 3 1.2.1 等曲率分析 4 1.2.2 變曲率分析 5 1.3 研究目的 10 1.4 論文架構 10 第二章 平面線驅動連續型機器人 13 2.1 平面線驅動連續型機器人構造 13 2.2 問題敘述與基本假設 14 第三章 樑理論比較 16 3.1 橢圓積分法 17 3.2 偽剛體模型法 23 3.3 非線性樣條理論 28 3.4 比較分析 30 3.4.1 橢圓積分法求解 31 3.4.2 偽剛體模型法求解 31 3.4.3 非線性樣條理論求解 32 3.4.4 有限元素分析 34 3.4.5 結果比較 35 第四章 平面線驅動連續型機器人之位移分析 38 4.1 問題敘述 38 4.2 偽剛體模型法求解 39 4.3 數值範例 43 4.4 小結 47 第五章 實驗與結果比較 49 5.1 實驗設備 49 5.2 實驗流程 54 5.2.1 實驗校正 54 5.2.2 實驗步驟 56 5.3 實驗結果 56 5.4 數據比較 61 5.5 誤差討論 69 5.6 小結 71 第六章 結論與未來展望 72 6.1 結論 72 6.2 未來展望 73 參考文獻 75

    [1] Suzumori, K., Iikura, S., Tanaka, H., 1992, “Applying a Flexible Microactuator to Robotic Mechanisms,” IEEE Control Systems, 12(1), pp. 21-27.
    [2] Immega, G., Antonelli, K., Ko, J., 1995, “Teleoperation of the KSI Tentacle Manipulator for Hot Cell Decontamination,” IEEE International Conference on Intelligent Systems for the 21st Century, Nagoya, Japan, 21-27 May, Vol. 3, pp. 2133-2136.
    [3] Cies’lak, R., Morecki, A., 1999, “Elephant Trunk Type Elastic Manipulator - A Tool for Bulk and Liquid Materials Transportation,” Robotica, 17(1), pp. 11-16.
    [4] Lane, D. M., Davies, J. B. C., Robinson, G., O’Brien, D. J., Sneddon, J., Seaton, E., Elfstrom, A., 1999, “The Amadeus Dextrous Subsea Hand: Design, Modeling, and Sensor Processing,” IEEE Journal of Oceanic Engineering, 24(1), pp. 96-111.
    [5] Tsukagoshi, H., Kitagawa, A., Segawa, M., 2001, “Active Hose: an Artificial Elephant's Nose with Maneuverability for Rescue Operation,” IEEE International Conference on Robotics and Automation, Seoul, Korea, May 21-26, Vol. 3, pp. 2454-2459.
    [6] Anscombe, R., Buckinham, R., Graham, A., Parry, N., Lichon, M., 2006, “Snake-Arm Robots Conduct Nuclear Maintenance,” Proceedings of the International Youth Nuclear Congress Olkiluoto, Finland, June 18-23, pp. 246.1-246.9.
    [7] Dario, P., Carrozza, M. C., Marcacci, M., D’Attanasio, S., Magnami, B., Tonet, O., Megali, G., 2000, “A Novel Mechatronic Tool for Computer-Assisted Arthroscopy,” IEEE Transactions on Information Technology in Biomedicine, 4(1), pp. 15-29.
    [8] Ikuta, K., Tsukamoto, M., Hirose, S., 1988, “Shape Memory Alloy Servo Actuator System with Electric Resistance Feedback and Application for Active Endoscope,” IEEE International Conference on Robotics and Automation, Phililadelphia, USA, April 24-29 Vol. 1, pp. 427-430.
    [9] Nakamura, Y., Matsui, A., Saito, T., Yoshimoto, K., 1995, “Shape-Memory-Alloy Active Forceps for Laparoscopic Surgery,” IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21-27 May, Vol. 3, pp. 2320-2327.
    [10] Peirs, J., Reynaerts, D., Brussel, H. V., Gersem, G. D., Tang, H. T., 2003, “Design of An Advanced Tool Guiding System for Robotic Surgery,” IEEE International Conference on Robotics and Automation, Tapei, Taiwan, September 14-19, Vol. 2, pp. 2651-2656.
    [11] Webster, R. J., Kim, J. S., Cowan, N. J., Chirikjian, G. S., Okamura, A. M., 2006, “Nonholonomic Modeling of Needle Steering,” The International Journal of Robotics Research, 25(5-6), pp. 509-525.
    [12] Jienan, D., Goldman, R. E., Kai, X., Allen, P. K., Fowler, D. L., Simaan, N., 2013, “Design and Coordination Kinematics of an Insertable Robotic Effectors Platform for Single-Port Access Surgery,” IEEE/ASME Transactions on Mechatronics, 18(5), pp. 1612-1624.
    [13] Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P., 2012, “Soft Robot Arm Inspired by the Octopus,” Advanced Robotics, 26(7), pp. 709-727.
    [14] Jones, B. A., Walker, I. D., 2006, “Kinematics for Multisection Continuum Robots,” IEEE Transactions on Robotics, 22(1), pp. 43-55.
    [15] Takanobu, H., Tandai, T., Miura, H., 2004, “Multi-dof Flexible Robot Base on Tongue,” IEEE International Conference on Robotics and Automation, New Orleans, USA, April 26- May1, Vol. 3, pp. 2673-2678.
    [16] Camarillo, D. B., Milne, C. F., Carlson, C. R., Zinn, M. R., Salisbury, J. K., 2008, “Mechanics Modeling of Tendon Driven Continuum Manipulators,” IEEE Transactions on Robotics, 24(6), pp. 1262-1273.
    [17] Hirose, S., Ma, S., 1991, “Coupled Tendon-Driven Multijoint Manipulator,” IEEE International Conference on Robotics and Automation, Osaka, Japan, 3-5 November, Vol. 2, pp. 1268-1275.
    [18] Hu, H., Wang, P., Zhao, B., Li, M., Sun, L., 2009, “Design of a Novel Snake-like Robotic Colonoscope,” International Conference on Robotics and Biomimetics, Guilin, China, December 19-23, pp. 1957-1961.
    [19] Larson, O., Davidson, C., 1985, Flexible Arm, Particularly a Robot Arm, United Srates Patent No. 4,494,417.
    [20] Li, C., Rahn, C. D., 2002, “Design of Continuous Backbone, Cable-Driven Robots,” ASME Journal of Mechanical Design, 124(2), pp. 265-271.
    [21] Dupont, P. E., Lock, J., Butler, E., 2009, “Torsional Kinematic Model for Concentric Tube Robots,” IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17, pp. 3851-3858.
    [22] Dupont, P. E., Lock, J., Itkowitz, B., Butler, E., 2010, “Design and Control of Concentric Tube Robots,” IEEE Transactions on Robotics, 26(2), pp. 209-2225.
    [23] Webster, R. J., Okamura, A. M., Cowan, N. J., 2006, “Toward Active Cannulas: Miniature Snake-Like Surgical Robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Orlando, USA, May 15-19, Vol. 25, pp. 2857-2863.
    [24] Webster, R. J., Romano, J. M., Cowan, N. J., 2009, “Mechanics of Precurved-Tube Continuum Robots,” IEEE Transactions on Robotics, 25(1), pp. 67-78.
    [25] Gravange, I. A., Rahn, C., Walker, I. D., 2003, “Large Deflection Dynamics and Control for Planar Continuum Robots,” IEEE/ASME Transactions on Mechatronics, 8(2), pp. 299-307.
    [26] Li, Z., Du, R., 2013, “Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot,” International Journal of Advanced Robotic Systems, 10(209), pp. 1-11.
    [27] Lian, W. N., 2012, Kinematic Analysis of a Superelastic-wire-embedded Flexible Tube Mechanism, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [28] Jones, B. A., Walker, I. D., 2006, “Practical Kinematics for Real-Time Implementation of Continuum Robots,” IEEE Transactions on Robotics, 22(6), pp. 1087-1099.
    [29] Jones, B. A., Walker, I. D., 2007, “Limiting-Case Analysis of Continuum Trunk Kinematics,” IEEE International Conference on Robotics and Automation, Roma, Italy, April 10-14, pp. 1363-1368.
    [30] Simaan, N., Xu, K., 2010, “Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots Via Elliptic Integrals,” ASME Journal of Mechanisms and Robotics, 2(1), p. 011006.
    [31] Hasanzadeh, S., Janabi-Sharifi, F., 2014, “An Efficient Static Analysis of Continuum Robots,” ASME Journal of Mechanisms and Robotics, 6(3), p. 031011.
    [32] Rucker, D. C., Webster, R. J., 2011, “Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading,” IEEE Transactions on Robotics, 27(6), pp. 1033-1044.
    [33] Gravagne, I. A., Walker, I. D., 2002, “Manipulability, Force, and Compliance Analysis for Planar Continuum Robots,” IEEE Transactions on Robotics and Automation, 18(3), pp. 263-273.
    [34] Chirikjian, G. S., Burdick, J. W., 1994, “A Modal Approach to Hyper-Redundant Manipulator Kinematics,” IEEE Transactions on Robotics and Automation, 10(3), pp. 343-353.
    [35] Ebeert-Uphoff, I., Chirikjian, G. S., 1996, “Inverse Kinematics of Discretely Actuated Hyper-Redundant Manipulators Using Workspace Densities,” IEEE International Conference on Robotics and Automation, Minneapolis, USA, April 22-28, Vol. 1, pp. 139-145.
    [36] Suthakorn, J., Chirikjian, G. S., 2001, “A New Inverse Kinematics Algorithm for Binary Manipulators with Many Actuators,” Advanced Robotics, 15(2), pp. 225-244.
    [37] Wright, C., Johnson, A., Peck, A., McCord, Z., Naaktgeboren, A., Gianfortoni, P., Gonzalez-Rivero, M., Hatton, R., Choset, H., 2007, “Design of a Modular Snake Robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, USA, October 29-November 2, pp. 2609-2614.
    [38] Paljug, E., Ohm, T., Hayati, S., 1995, “The JPLs Serpentine Robot: a 12-DOF System for Inspection,” IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21-27 May, Vol. 3, pp. 3143-3148.
    [39] Lian, W.-N., Kuo, C.-H., 2013, “Inverse Kinematics of a Wire-Actuated Constant-Curvature Flexural Mechanism in General Geometry,” The 3rd IFToMM International Symposium on Robotics and Mechatronics, Singapore, October 2-4.
    [40] M., T., M., A., H., A., S., O., 2013, “A Variable Curvature Modeling Approach for Kinematic Control of Continuum Manipulators,” American Control Conference, Washington, USA, June 17-19, pp. 4945-4950.
    [41] Walker, I. D., 2013, “Continuous Backbone “Continuum” Robot Manipulators,” ISRN Robotics, vol. 2013 pp. 1-19.
    [42] Saalschutz, L., 1880, Der belastete Stab unter Einwirkung einer seitlichen Kraft: Auf Grundlage des strengen Ausdrucks fur den Krummungsradius, B. G. Teubner Verlag, Leipzig.
    [43] Byrd, P. F., Friedman, M. D., 1971, Handbook of Elliptic Integrals for Engineers and Scientists, Vol. 67, Springer Berlin.
    [44] Kimball, C., Tsai, L.-W., 2002, “Modeling of Flexural Beams Subjected to Arbitrary End Loads,” ASME Journal of Mechanical Design, 124(2), pp. 223-235.
    [45] Zhang, A. M., Chen, G. M., 2013, “A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms,” ASME Journal of Mechanisms and Robotics, 5(2), p. 021006.
    [46] Lee, E. H., Forsythe, G. E., 1973, “Variational Study of Nonlinear Spline Curves,” SIAM Review, 15(1), pp. 120-133.
    [47] Howell, L., Midha, A., Norton, T., 1996, “Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms,” ASME Journal of Mechanical Design, 118(1), pp. 126-131.
    [48] Su, H. J., 2009, “A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads,” ASME Journal of Mechanisms and Robotics, 1(2), p. 021008.
    [49] Chen, G. M., Xiong, B. T., Huang, X. B., 2011, “Finding the Optimal Characteristic Parameters for 3R Pseudo-Rigid-Body Model Using an Improved Particle Swarm Optimizer,” Precision Engineering, 35(3), pp. 505-511.
    [50] Trivedi, D., Lotfi, A., Rahn, C. D., 2008, “Geometrically Exact Models for Soft Robotic Manipulators,” IEEE Transactions on Robotics, 24(4), pp. 773-780.
    [51] Tunay, I., 2013, “Spatial Continuum Models of Rods Undergoing Large Deformation and Inflation,” IEEE Transactions on Robotics, 29(2), pp. 297-307.
    [52] Dehghani, M., Moosavian, S. A. A., 2013, “Modeling of Continuum Robots with Twisted Tendon Actuation Systems,” International Conference on Robotics and Mechatronics, Teh Ran, Iran February 13-15, pp. 14-19.
    [53] Wallis, J., 1656, The Arithmetic of Infinitesimals, Springer, Berlin.
    [54] Abramowitz, M., Stegun, I. A., 1972, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Vol. No.55, Courier Dover Publications, Mineola.
    [55] Howell, L. L., Midha, A., 1995, “Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms,” ASME Journal of Mechanical Design, 117(1), pp. 156-165.
    [56] Howell, L. L., 2001, Compliant mechanisms, John Wiley & Sons, New York.
    [57] Howell, L. L., Magleby, S. P., Olsen, B. M., 2013, Handbook of compliant mechanisms, John Wiley & Sons, New York.
    [58] Bartels, R. H., John C. Beatty, and Brian A. Barsky, 1987, An introduction to splines for use in computer graphics and geometric modeling, Morgan Kaufmann, Burlington.
    [59] Wahba, G., 1990, Spline Models for Observational Data, Society for Industrial and Applied Mathematics, Philadelphia.
    [60] Yamaguchi, F., 1988, Curves and Surfaces in Computer Aided Geometric Design Springer-Verlag, Berlin.
    [61] Awtar, S., Slocum, A. H., Sevincer, E., 2006, “Characteristics of Beam-Based Flexure Modules,” ASME Journal of Mechanical Design, 129(6), pp. 625-639.
    [62] Northern Digital Inc. http://www.ndigital.com/medical/products/aurora/.

    無法下載圖示 全文公開日期 2019/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE