簡易檢索 / 詳目顯示

研究生: 許名宏
Ming-Hong Xu
論文名稱: 連續體機器手臂開發及影像伺服應用
Development of a Continuum Robot and Its Visual Servoing Applications
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 陳金聖
劉孟昆
鍾聖倫
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 81
中文關鍵詞: 連續體機器人影像伺服追蹤影像雅各比自主操作
外文關鍵詞: Continuum robot, image servo tracking, image Jacobian, autonomous manipulation
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高度自動化發展的現狀下,機械手已經廣泛應用於各個領域。對軟機械手的研究越來越受歡迎。然而,柔性機械手的運動學比一般機械臂複雜得多。因此,難以設計和控制。簡化具有多個自由度的連續體機器人的製造。這項研究提出了一個連續運動模塊(CKM)。單個 CKM 主要由連接五塊板的四個萬向節、支撐的壓縮彈簧和三根獨立的拉索組成。每個 CKM 的底部可以與相鄰的 CKM 或機器人平台連接。在控制方面,所有驅動電纜均由遠端位置的線性致動器控制。為了證明所提出的 CKM 的功能和可行性,製作了一個連續體機器人。連續體機器人主要由三個可移動的 CKM 和兩個定長的延伸部分組成。控制主要是通過一個驅動電纜模具。團體。驅動電纜模塊主要由九個線性滑台組成,用作 CKM 的控制線性執行器。並在機器人底部安裝移動滑台,使連續體機器人執行基於雅可比的圖像伺服跟踪任務,實現向前移動的功能。連續體機器人執行的基於雅可比的圖像伺服跟踪任務包括使用眼手 (ETH) 配置跟踪心形軌跡以及插入/拔出具有手眼(EIH) 配置的電源適配器。在圖像跟踪點的提取中,利用 YOLO-V3 對象識別獲取目標的主要位置,通過圖像處理提取目標的特徵點作為跟踪點。最後,通過定量跟踪誤差分析來評估整體性能。


    The research on soft manipulators is becoming more and more popular. However,
    the kinematics of flexible manipulators is much more complicated than general arms.
    Therefore, it is difficult to design and control. To ease the fabrication of a continuum robot with multiple degrees of freedom. This study proposed a continuum motion module (CKM). A single CKM is mainly composed of four universal joints connecting five plates, compression springs for support, and three independent tension cables. The bottom of each CKM can be connected with the neighboring CKM or robot platform. All tension cables are controlled by linear actuators at a distal site. In order to demonstrate the function and feasibility of the proposed CKM, a continuum robot was made. The continuum robot is mainly composed of three movable CKMs and two fixedlength extensions. The control is mainly through a drive cable mold. group. The drive cable module is mainly composed of nine linear sliding tables, which are used as the control linear actuators of CKM. And a moving sliding table is installed at the bottom of the robot to enable the continuum robot to perform the Jacobian-based image servo tracking task to achieve the function of moving forward. The Jacobian-based image servo tracking tasks performed by the continuum robot include tracking a heart shape trajectory with eye-to-hand (ETH) configuration and plugging/ unplugging a power adapter with eye-in-hand (EIH) configuration. In the extraction of image tracking points, the YOLO-V3 object recognition is used to obtain the main position of the target, and the feature points of the target are extracted as the tracking point through image processing. Finally, the overall performance is evaluated through quantitative tracking error analysis

    指導教授推薦書 i 口試委員會審定書 ii 摘要 iii Abstract v List of Tables ix List of Figures x Nomenclature xiii Chapter 1 Introduction 1 1.1 Motivation and Purpose 1 1.2 Literature Review 4 1.2.1 Related Research of Continuum Robots 4 1.2.2 Related Research of Visual Servoing 5 1.3 Organization of the Thesis 7 Chapter 2 System Architecture and Operation 8 2.1 System Architecture 8 2.2 Continuum Manipulator and Hardware Architecture 10 2.2.1 Continuum Kinematic Modules (CKM) 11 2.2.2 Continuum Manipulator 12 2.2.3 Control Module of Tension Cables 13 2.2.4 Gripper and Camera 15 2.2.5 Assembly of Continuum Manipulator 18 2.3 Control circuit design 19 2.4 Software System Design 22 2.4.1 Continuum manipulator system 22 2.4.2 Visual Servo Control System 23 2.4.3 You Only Look Once(YOLO) 23 Chapter 3 Kinematics of Continuum Manipulator 25 3.1 Continuum Kinematic Modules (CKM) 25 3.1.1 Forward Kinematic 25 3.1.2 Inverse Kinematic 27 3.1.3 Parameter Conversion 29 3.2 Continuum Manipulator 31 3.2.1 Forward Kinematics 31 3.2.2 Velocity Kinematics 32 3.2.3 Working Space and Limitation of Continuum Manipulator 35 Chapter 4 Visual Servo Control System 36 4.1 Image-Based Visual Servo (IBVS) Control 36 4.1.1 Image Jacobian Matrix 37 4.1.2 Eye In Hand 39 4.1.3 Eye To Hand 40 4.2 Object Recognition and Feature Extraction 41 4.2.1 You Only Look Once(YOLO) 41 4.2.2 Feature Extraction and Analysis 43 Chapter 5 Experiments and Results 46 5.1 Simulation Analysis of Kinematic 46 5.2 Heart Shape Trajectory Tracking 51 5.2.1 42 Trajectory Points 53 5.2.2 82 Trajectory Points 54 5.2.3 162 Trajectory Points 55 5.2.4 322 Trajectory Points 56 5.2.5 Conclusion of Heart Shape Trajectory Tracking 57 5.3 Image Servo Tracking Experiment 58 5.3.1 Conclusion of Image Servo Tracking 62 Chapter 6 Conclusions and Future Works 63 References 64

    [1] M. W. Hannan, and I. D. Walker, “Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots”, J. Robot. Syst, vol. 20, pp. 45-63, 2003
    [2] B. A. Jones, and I. D. Walker, “Kinematics for multisection continuum robots,” IEEE Transactions on Robotics, vol. 22, no. 1, pp. 43-55, 2006
    [3] H. S. Yoon, and B. J. Yi, “A 4-DOF flexible continuum robot using a spring backbone,” International Conference on Mechatronics and Automation, pp. 1249-1254, 2009
    [4] T. Tokunaga, K. Oka, and A. Harada, “1segment continuum manipulator for automatic harvesting robot - prototype and modeling,” IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1655-1659, 2017
    [5] Y. Liu, Y. Yang, Y. Peng, S. Zhong, N. Liu, and H. Pu, “A Light Soft Manipulator With Continuously Controllable Stiffness Actuated by a Thin McKibben Pneumatic Artificial Muscle,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 1944-1952, 2020
    [6] M. M. Dalvand, S. Nahavandi, and R. D. Howe, “An Analytical Loading Model for n-Tendon Continuum Robots,” IEEE Transactions on Robotics, vol. 34, no. 5, pp. 1215-1225, 2018
    [7] T. Hassan, M. Cianchetti, B. Mazzolai, C. Laschi, and P. Dario, “Active-Braid, a Bioinspired Continuum Manipulator,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2104-2110, 2017
    [8] F. J. Comin, C. M. Saaj, S. M. Mustaza, and R. Saaj, “Safe Testing of Electrical Diathermy Cutting Using a New Generation Soft Manipulator,” IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1659-1666, 2018
    [9] B. Zhao, W. Zhang, Z. Zhang, X. Zhu, and K. Xu, “Continuum Manipulator with Redundant Backbones and Constrained Bending Curvature for Continuously Variable Stiffness,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7492-7499, 2018
    [10] T. Qu, J. Chen, S. Shen, Z. Xiao, Z. Yue, and H. Y. K. Lau, “Motion control of a bio-inspired wire-driven multi-backbone continuum minimally invasive surgical manipulator,” IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1989-1995, 2016
    [11] M. Hwang, and D. Kwon, “Strong Continuum Manipulator for Flexible Endoscopic Surgery,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, pp. 2193-2203, Oct. 2019
    [12] S. Zhang, Q. Li, H. Yang, J. Zhao, and K. Xu, “Configuration Transition Control of a Continuum Surgical Manipulator for Improved Kinematic Performance,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3750-3757, 2019
    [13] L. Wu, R. Crawford, and J. Roberts, “Dexterity Analysis of Three 6-DOF Continuum Robots Combining Concentric Tube Mechanisms and Cable-Driven Mechanisms,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 514-521, 2017
    [14] T. Wang et al., “Design and Analysis of a Snake-like Surgical Robot with Continuum Joints,” 5th International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 178-183, 2020
    [15] J. Li, Y. Zhou, J. Tan, Z. Wang, and H. Liu, “Design and Modeling of a Parallel Shifted-Routing Cable-Driven Continuum Manipulator for Endometrial Regeneration Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3178-3183, 2020
    [16] [16] W. Shen, G. Yang, T. Zheng, Y. Wang, K. Yang, and Z. Fang, “An Accuracy Enhancement Method for a Cable-Driven Continuum Robot With a Flexible Backbone,” IEEE Access, vol. 8, pp. 37474-37481, 2020
    [17] I. A. Seleem, H. El-Hussieny, S. F. M. Assal, and H. Ishii, “Development and Stability Analysis of an Imitation Learning-Based Pose Planning Approach for Multi-Section Continuum Robot,” IEEE Access, vol. 8, pp. 99366-99379, 2020
    [18] Q. Li, H. Yang, Y. Chen, and K. Xu, “Closed Loop Control of a Continuum Surgical Manipulator for Improved Absolute Positioning Accuracy,” IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1551-1556, 2019
    [19] J. Lai, K. Huang, B. Lu, and H. K. Chu, “Toward Vision-based Adaptive Configuring of A Bidirectional Two-Segment Soft Continuum Manipulator,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 934-939, 2020
    [20] H. Yang, B. Wu, X. Liu, and K. Xu, “A Closed-Loop Controller for a Continuum Surgical Manipulator Based on a Specially Designed Wrist Marker and Stereo Tracking,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 335-340, 2020
    [21] K. Song, and H. Tsai, “Visual Servoing and Compliant Motion Control of a Continuum Robot,” 18th International Conference on Control Automation and Systems (ICCAS), pp. 734-739, 2018
    [22] H. Mo et al., “Control of a Flexible Continuum Manipulator for Laser Beam Steering,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1074-1081,2021
    [23] K. Wu et al., “Safety-Enhanced Model-Free Visual Servoing for Continuum Tubular Robots Through Singularity Avoidance in Confined Environments,” IEEE Access, vol. 7, pp. 21539-21558, 2019
    [24] C. Wu, and K. Song, “Hybrid visual servoing design for a continuum robot under visibility constraint and voice commands,” 16th International Conference on Control Automation and Systems (ICCAS), pp. 1255-1260, 2016
    [25] G. Del Giudice, A. Orekhov, J. Shen, K. Joos, and N. Simaan, “Investigation of Micro-motion Kinematics of Continuum Robots for Volumetric OCT and OCT-guided Visual Servoing,” IEEE/ASME Transactions on Mechatronics, doi: 10.1109/TMECH.2020.3043438, 2020
    [26] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo control,” IEEE Transactions on Robotics and Automation, vol. 12, no. 5, pp. 651-670, 1996
    [27] Robert J Webster III, and Bryan A Jones, “Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review,” The International Journal of Robotics Research, vol 29, issue 13, pp. 1661 – 1683, 2010
    [28] V. Falkenhahn, A. Hildebrandt, R. Neumann, and O. Sawodny, “Dynamic Control of the Bionic Handling Assistant,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 6-17, 2017
    [29] J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, 1986
    [30] Satoshi Suzuki, KeiichiA be, “Topological structural analysis of digitized binary images by border following,” Computer Vision, Graphics, and Image Processing, Volume 30, Issue 1, pp. 32-46, 1985

    無法下載圖示 全文公開日期 2024/07/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE