簡易檢索 / 詳目顯示

研究生: 吳岳勳
Yueh-Hsun Wu
論文名稱: 二階線性漸變式濾波器之設計流程開發
Development of Design Process for Sencond-Order Linear Variable Filters
指導教授: 蘇順豐
Shun-Feng Su
口試委員: 柯正浩
Cheng-Hao Ko
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 115
中文關鍵詞: 線性漸變濾波器薄膜穿透頻譜圖
外文關鍵詞: Linear Variable Filter, Thin Film, Transmission Spectrum
相關次數: 點閱:517下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光譜儀系統中,根據光柵方程式將入射光分光後,偵測器上會產生高階光波干擾,二階線性漸變濾波器(second-order Linear Variable Filter, LVF)目的為濾除光譜儀系統中光柵分光後二階以上光波。本研究為探討LVF的設計流程開發,可主要分為三個部分。
    第一部份為膜層厚度分佈設計,以基板上加擋板的LVF製作方式,定義擋板高度、基板位置、尺寸與蒸鍍腔內配置的結構參數,建立理論模型,模擬出基板上薄膜二維及三維的厚度分佈,並以數值軟體Excel與MATLAB計算與分析。接著變動擋板高度數值,可得出在LVF膜層相對厚度0%至100%的水平位置距離與擋板高度之關係。
    光譜儀系統中光柵和偵測器皆會對光波穿透率造成影響,故在第二部分,會使用包含以上變數的效能運算匹配式,計算LVF對於高階光波的透射率規格。再把本研究膜層結構設計的對稱膜堆設計原則,與前述LVF規格,套入光學鍍膜軟體 Essential Macleod,模擬應用波段為400 – 1000 nm的LVF膜層結構,包括膜層的物理厚度(physics thickness)、光學厚度(optical thickness),以及穿透頻譜圖等結果。接著使用三種方式推導出基板上漸變膜層的穿透頻譜可知,以先模擬出膜層相對厚度50%的穿透頻譜,再利用軟體改變膜層厚度至相對厚度25%和75%的方式,其穿透頻譜表現最能接近實際應用情況。再改變應用波段至900 – 1700 nm,得岀膜層結構與穿透頻譜圖。
    最後部分,配合實際光譜儀案例,在兩個波段範圍:可見光波段(400 – 1000 nm),近紅外光波 (900 - 1700 nm),設計兩組LVF,搭配解析度為1.5 nm及3 nm的光柵和規格為8 μm/pixel size及25 μm/pixel size的偵測器,設計出能與其匹配的LVF,驗證本研究所開發之設計流程。


    According to the grating function, high order wavelength interference occurs on the detector in a spectrometer system. A second-order linear variable filter (LVF) is used for the purpose of eliminating these high order wavelengths. Development of design process for LVF is discussed in this thesis, which can be divided into three major parts. The first part is the design of distribution for LVF thin film thickness, by using the manufacturing of adding a mask on the substrate. It starts with building a theory model for simulating two and three-dimension thin film thickness distribution, then uses numerical calculation software such as Excel and MATLAB to analysis the results. These show the relationship between the horizontal distances from 0% to 100% relative thickness position and the mask heights.
    In a spectrometer system, grating and detector also affect the optical transmission. So an equation includes these factors will be introduced in the second part and is used for calculating the transmission of high order wavelengths about LVF. Substituting the results above and the symmetric multilayers design, which is the method of constructing thin film structures in this thesis, into the optical coating design software, Essential Macleod, to simulate physics thickness, optical thickness and transmission spectrum of thin film layers.
    Then uses three different ways to derived transmission spectrum in different relative thickness positions applied in 400 – 1000 nm wavebands. The results show that the way approaches the real situation most, is simulating the transmission spectrum at the 50% relative thickness position of LVF first, then keep the same thin film structures and change the relative thickness to 25% and 75%. Then repeats the process above but changes wavebands to 900 -1700 nm, outputs the thin film structures and the transmission spectrum.
    Two wavebands are introduced in the third part, including visible and near-infrared wavelengths, to verify the design process developed. With two 1.5 nm and 3 nm resolution gratings and two 8μm and 25μm pixel size detectors, the process is worked.

    摘要…...……………………………………………….…………………..….………..I Abstract….…………………………………………………….………..….…….……II 誌謝…..…………………………………………………………………..…….…….III 目錄…………………………………………………………………………………..IV 圖目錄………………………………………………………………………………..VI 表目錄……………………………………………………………………………..….X 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 1 1.3 研究目的 6 1.4 研究架構 6 第二章 理論分析 8 2.1 電子束蒸鍍原理介紹 8 2.2 薄膜厚度理論 9 2.3 光柵方程式(Grating Equation) 12 2.4 光學濾波器 14 第三章 膜層厚度分佈理論設計 17 3.1 座標轉換 19 3.2 投影點座標位置 21 3.3 蒸鍍判斷線建立 24 第四章 理論設計與程式模擬結果 28 4.1 理論模型計算流程 28 4.2 理論模擬結果 31 4.3 程式模擬計算流程 35 4.4 程式模擬計算結果 37 第五章 可見光波段(400 – 1000 nm)之膜層結構理論設計與設計結果 50 5.1 膜層結構設計原則 50 5.2 效能匹配關係式 53 5.3 光學薄膜軟體設計流程 58 5.4 不同鍍膜材料組合下膜層結構設計結果 62 5.5 優化流程 63 5.6 不同膜厚與光譜表現關係 72 5.7 調整膜層厚度方法與結果 73 第六章 近紅外光波段(900 – 1700 nm)之膜層結構設計結果 83 6.1 膜層結構設計 83 6.2 不同位置之穿透頻譜圖 90 第七章 實際LVF設計案例 92 7.1 空間色散原理(Spatial Dispersion ) 93 7.2 實際案例介紹 94 7.3 可見光波段(400 – 1000 nm)設計結果 98 7.4 近紅外光波段(900 – 1700 nm)設計結果 104 第八章 結論 111 參考資料 114

    [1] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,新北市 (2012)
    [2] Cheng-Hao Ko, Kuei-Ying Chang, and You-Min Huang, “Analytical modeling and tolerance analysis of a linear variable filter for spectral order sorting,” Optics Express, Vol. 23, No. 4, pp. 5102-5116 (2015)
    [3] Cheng-Hao Ko, Kuei-Ying Chang, and You-Min Huang, “Theoretical Modeling and Experimental Verification of Linear Variable Filters,” International Journal of Surface and Engineering, Vol. 9, No. 2/3, pp. 216-230 (2015)
    [4] Thin Film Center Inc., The Essential Macleod, Optical Coating Design Software, User’s Manual, Thinf Film Center Inc., Arizona (2013)
    [5] Epstein L. I., “The design of optical filter,” Journal of the Optical Society of America, Vol.42, Issue11, pp. 806-810 (1952)
    [6] J. Pan, F. Zhang and Y. Yan, “Mask designing of linear variable filters,” Second International Conference on Thin Film Physics and Applications, Shanghai, China, Vol. 2364, pp. 225-228 (1994)
    [7] J. H. Correia, A. Emadi and R. F. Wolffenbuttel, “UV Bandpass optical filter for microspectrometers, ECS transactions,” Electro Chemical Society, NJ, USA, Vol. 4, No.1, pp. 141-147 (2006)
    [8] A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R.F. Wolffenbuttel, “IC-compatible fabrication of linear variable optical filters for microspectrometer,” Sensors and Actuators A: Physicals, Proceedings of the Eurosensors XXIII, Vol. 162, Issue 2, pp. 400-405 (2010)
    [9] A. Emadi, S. Grabarnik, H. Wu, G.D. Graaf and R.F. Wolffenbuttel, “Spectral measurement with a linear variable filter using a LMS algorithm,” Procedia Engineering, Vol. 5, pp. 504-507 (2010)
    [10] A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Engineering, Vol.5, pp. 416-419 (2010)
    [11] A. Emadi, H. Wu, G. De Graaf, and R. F. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter,” Optical Express, Vol.20, pp.489-507 (2012)
    [12] A. Emadi, H. Wu, G. D. Graaf, P. Enoksson, J.H. Correia, and R. Wolffenbuttel, “Linear variable optical filter-based ultraviolet microspectrometer,” Journal of Applied Optics, Vol. 51, pp. 4308-4315 (2012)
    [13] Cheng-Hao Ko, Wei-Chih Liu, Nien-Po Chen, Ji-Lin Shen, and Jian-Shian Lin, “Double reflection in the concave reflective blazed grating” Optics Express, Vol. 15, No. 17, pp. 10498~10503 (2007)
    [14] Cheng-Hao Ko and Bor-Yuan Shew, “An optical chip that spatially separates wavelengths,” Industrial Sensing & Measurement, SPIE Newsroom, (2007)
    [15] F. L. Laetitia Abel-Tiberini, Gérard Marchand,Luc Roussel, Gérard Albrand and Michel Lequime, “Manufacturing of linear variable filters with straight iso-thickness lines,” Advances in Optical Thin Film II, Proc. of SPIE. Vol 5963, 59630B (2005)
    [16] Mach, P., and Kocian, M., “Modeling of Evaporation of Thin Films Using DOE,” ISSE 29th International Spring Seminar, St. Marienthal, Germany, pp.273-277 (2006)
    [17] Kim, B., Sinibaldi, J., and Karunasiri, G. “MEMS Scanning Diffraction Grating Spectrometer,” Optical MEMS and Their Applications Conference, Big Sky, MT, pp. 46-47 (2006)
    [18] A. P. A.Krasilnikova, M.Dami, L. Abel-Tiberini, F.Lemarquis, and M.Lequime, “Spatially resolved spectroscopy for non-uniform thin film coatings: comparison of two dedicated set-ups,” Optical Fabrication, Testing, and Metrology II, Proc of SPIE, Vol. 5965, 59651V (2005)
    [19] Schellingerhout, A. J. G., Janocko, M. A., Klapwijk, T. M., and Mooij, J. E., “Rate control for electron gun evaporation”, Review of Scientific Instruments, Vol.60, No.6, pp. 1177-1183 (1989)
    [20] L. Abel-Tiberini, F. Lemarquis and M. Lequime, “Dedicated spectrophotometer for localized transmittance and reflectance measurements,” Applied Optics, Vol.45, Issue.7, pp. 1386-1391 (2005)
    [21] Laëtitia Abel-Tibérini, Frédéric Lemarquis, and Michel Lequime, “Masking mechanisms applied to thin-film coatings for the manufacturing of linear variable filters for two-dimensional array detectors,” Applied Optics, Vol. 47, Issue 30, pp. 5706-5714 (2008)
    [22] Arvin Emadi, Semen Grabarnik, Huaiwen Wu, Ger de Graaf, Karin Hedsten, Peter Enoksson, Jose Higino Correia, and Reinoud F.Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE, Vol.7716, 77162G (2010)

    無法下載圖示 全文公開日期 2020/12/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE