簡易檢索 / 詳目顯示

研究生: 林宏璋
Hung-Chang Lin
論文名稱: 電紡奈米纖維複合膜應用於直接接觸式薄膜蒸餾系統
A Study of Electrospun Nanocomposite Membranes Applied to Direct Contact Membrane Distillation
指導教授: 蘇清淵
Ching-Iuan Su
口試委員: 李俊毅
Jiunn-Yih Lee
黃盟舜
Meng-Shun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 105
中文關鍵詞: 靜電紡絲直接接觸膜蒸餾奈米纖維滲透通量疏水性孔隙率
外文關鍵詞: Electrospinning, Direct contact membrane distillation, Nanofiber membrane, Flux, Hydrophobicity, Porosity
相關次數: 點閱:386下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以靜電紡絲(Electrospinning, ES)技術製備電紡奈米纖維膜,電紡液以聚二氟乙烯-六氟丙烯[poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP]為主要原料,並添加具有低熱傳導率的無機疏水性中孔洞二氧化矽粒子,使電紡纖維複合膜具有高孔隙率、低孔徑、奈米細度、高比表面積、高疏水性與低熱傳導係數之特性,並採用直接接觸式薄膜蒸餾系統(direct contact membrane distillation, DCMD),針對所配置的模擬海水進行脫鹽效能評估。
    研究主要探討脫鹽效能及薄膜性能參數,如:產水導電度、滲透通量、溫度極化係數、熱傳導係數等,並於長時間操作下評估薄膜的滲透通量變化及結垢現象,進而與商業化薄膜進行比較。研究結果發現,PVDF-HFP電紡纖維複合膜最佳性質為平均孔徑0.25 μm、孔隙率89%、熱傳導係數0.029 W/m•K及平均纖維直徑218 nm,且脫鹽率可達99%以上,同時具有備設備簡單、操作容易、常壓操作、初設成本低、分離效率高及前處理需求低等優勢。
    薄膜蒸餾之參數探討中,容積溫度差於50°C、掃流速度於500 mL/min時,PVDF-HFP電紡纖維複合膜滲透通量為 35.3 kg/m2hr,PTFE 商業膜膜滲透通量為24.2 kg/m2hr。研究結果顯示在20小時長時間的脫鹽實驗中,PVDF-HFP電紡纖維複合膜脫鹽率為99.96%,PTFE商業膜脫鹽率為99.94%。與PTFE商業膜相比較,PVDF-HFP電紡纖維複合膜與PTFE商業膜的脫鹽效果均達到99%以上,兩者差異不大,而PVDF-HFP電紡纖維複合膜於連續20小時的平均通量較PTFE商業膜產出多11.1 kg/m2hr。


    In this study, the electrospun nanofiber membrane were manufactured by the technique of electrospinning. The electrospinning solution consists of poly vinylidene fluoride - hexafluoropropylene [poly (vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP] which is the main material. And then, micropores nano-silicon particles were added to stabilize the temperature effect of membrane distillation system, so the characteristics of electrospun fiber composite membranes are high porosity with nanometer scale pore size, high specific surface area and hydrophobicity, low thermal conductivity. The simulated seawater desalination efficacy used direct-contact thin film distillation system (direct contact membrane distillation, DCMD) .
    This research mainly investigated the effectiveness of desalination and membrane performance characteristics, such as production of water conductivity, flux, temperature polarization coefficient, and thermal conductivity, etc. It assess the penetration of flux and fouling situation under several operations that compared with other commercialized membrane. The experiment found the result in the experiment of the membrane that PVDF-HFP electrospun fiber composite membranes have the optimal natures. The mean pore diameter is 0.25 μm, porosity is 89%, thermal conductivity is 0.029 W/m•K, average fiber diameter is 218 nm, and the desalination rate can reach almost 99%. The equipment also has a simple, easily to operate, atmospheric condition, low set up cost, high separation efficiency, and low demand for pre-treatment advantages.
    To investigate the parameters of the thin membrane distillation, the temperature difference of the chamber for 50°C. When the sweep velocity at 500 mL/min, PVDF-HFP electrospun fiber composite membranes have 35.3 kg/m2hr of flux which compared with PTFE commercial membrane 24.2 kg/m2hr. The result showed that the desalination rate of PVDF-HFP electrospun fiber composite membranes is 99.94% and PTFE membrane commercial 99.96% during 20 hours long time desalination. As the result, the desalination efficacy of PVDF-HFP electrospun fiber composite membranes and commercial one reached to 99%. Furthermore, the average flux of PVDF-HFP electrospun fiber composite membranes is more 11.1 kg/m2hr than commercial PTFE membrane for 20 consecutive hours.

    中文摘要.....................................................................................................I 英文摘要...................................................................................................III 誌謝............................................................................................................V 目錄...........................................................................................................VI 圖目錄.......................................................................................................XI 表目錄....................................................................................................XIV 第一章 緒論............................................................................................1 1.1 前言.............................................................................................1 1.2 薄膜蒸餾概述.............................................................................4 1.3 薄膜蒸餾法特徵及其優點.........................................................6 1.4 薄膜蒸餾法之類型.....................................................................8 1.5 應用薄膜蒸餾之薄膜須具備的特性.......................................11 1.6 薄膜製作方法介紹...................................................................16 1.7 薄膜蒸餾常見的型態...............................................................19 1.8 研究動機與目的...................................................................... 20 第二章 文獻回顧與理論......................................................................22 2.1 靜電紡絲奈米纖維薄膜應用於水質過濾領域.......................22 2.2 薄膜蒸餾技術...........................................................................29 2.3 薄膜蒸餾理論...........................................................................35 2.3.1 薄膜蒸餾原理................................................................35 2.3.2 溫度極化現象................................................................36 2.3.3 熱量傳輸效應................................................................37 2.3.4 質量傳輸效應................................................................39 2.4 靜電紡絲理論...........................................................................41 2.4.1 靜電紡絲原理................................................................41 2.4.2 影響靜電紡絲之參數....................................................42 第三章 實驗材料與方法......................................................................45 3.1 實驗材料...................................................................................45 3.2 實驗儀器及設備.......................................................................46 3.3 分析儀器...................................................................................46 3.4 實驗流程...................................................................................47 3.5 實驗方法...................................................................................48 3.5.1 靜電紡絲溶液的製備....................................................48 3.5.2 靜電紡絲工程................................................................48 3.6 靜電紡絲纖維薄膜表面與微細構造分析...............................48 3.6.1 孔徑分析........................................................................48 3.6.2 靜電紡絲奈米纖維膜表面觀察....................................50 3.6.3 接觸角測定儀................................................................51 3.6.4 纖維薄膜孔隙率測定....................................................52 3.6.5 熱傳導分析儀.................................................................53 3.6.6 纖維薄膜基重.................................................................54 3.6.7 薄膜熱壓處理….............................................................54 3.6.8 強力測試.........................................................................55 3.6.9 導電度量測.....................................................................56 3.7 薄膜蒸餾模組...........................................................................57 3.7.1 模具設計........................................................................57 3.7.2 系統設計........................................................................58 3.7.3 薄膜蒸餾模組實驗參數操作........................................62 3.8 薄膜蒸餾水質分析...................................................................64 3.8.1 pH 值...........................................................................64 3.8.2 總固體溶解量................................................................64 3.8.3 懸浮固體........................................................................64 3.8.4 電導度............................................................................64 第四章 結果與討論..............................................................................65 4.1 靜電紡絲最佳條件探討...........................................................65 4.1.1 滾筒收集器之轉速探討................................................. 65 4.1.2 有機鹽類的添加..............................................................67 4.1.3 不同紡絲針頭對於纖維薄膜直徑的影響......................68 4.2 添加疏水性奈米粒子對於纖維薄膜性質分析.......................70 4.2.1 疏水性中孔洞二氧化矽粒子添加..................................70 4.2.2 奈米纖維薄膜接觸角測定..............................................72 4.2.3 奈米纖維薄膜孔徑分析……………………..…............73 4.2.4 奈米纖維薄膜孔隙率分析..............................................74 4.3 複合型態結構...........................................................................76 4.3.1 奈米纖維薄膜複合型態結構製作..................................76 4.3.2 奈米纖維薄膜複合型態結構熱傳導率測定..................78 4.4 薄膜蒸餾模組參數設定探討...................................................79 4.4.1 固定容積溫度差,改變幫浦進水流速............................79 4.4.2 固定幫浦進水流速,改變容積溫度差............................80 4.5 複合型態電紡膜經由熱壓處理...............................................81 4.5.1 薄膜熱壓處理與薄膜品質分析......................................81 4.5.2 薄膜熱壓處理後拉力強度實驗......................................83 4.6 薄膜蒸餾模組連續12小時實驗.............................................84 4.6.1 薄膜冷水端導電度變化..................................................84 4.6.2 薄膜滲透通量變化..........................................................85 4.6.3 奈米纖維複合膜之溫度極化係數探討..........................86 4.7 實際海水進行薄膜蒸餾實驗...................................................87 4.7.1高流速高溫差、低流速高溫差、低流速低溫差……........87 4.7.2 薄膜脫鹽效果..................................................................90 4.7.3 飼水端電紡纖維膜與商業膜結垢情形..........................91 4.7.4 冷水端電紡纖維膜與商業膜結垢情形..........................92 4.8 薄膜蒸餾產水之水質檢測.......................................................93 第五章 結論..........................................................................................95 參考文獻..................................................................................................98

    【1】 方瑞麟,「薄膜蒸餾式海淡設備之流道分析」,碩士論文,國立成功大學,台南(2004) 。
    【2】 莊清榮,「平板式直接接觸薄膜蒸餾法之研究」,碩士論文,中原大學,桃園(2007) 。
    【3】 喬世珊、田玉龍、史曉明、金春華、邵奎興,「海水淡化技術及應用」,中國水利水電出版社,第7頁(2007) 。
    【4】 Charcosset, C., “A review of membrane processes and renewable energies for desalination”, Desalination, vol. 245, pp. 214-231, (2009)
    【5】 Dow, N., Zhang, J., Duke, M., Li, J., and Gray, S., “Ostarcevic Membrane Distillation of Brine Wastes”, Research Report, No. 63, (2008)
    【6】 Qtaishat, M., Rana, D., Khayet, M., and Matsuura, T., “Preparation and characterization of novel hydrophobic/hydrophilicpolyetherimide composite membranes for desalination by direct contactmembrane distillation”, Journal of Membrane Science, vol. 327, pp. 264-273, (2009)
    【7】 黃盟舜、鐘琍菁、劉柏逸,「薄膜蒸餾技術於水處理中的應用」,自來水會刊,第30 卷,第4 期,第63-71頁(2011) 。
    【8】 施鈞瀚,「奈米纖維複合膜應用於海水淡化技術中薄膜蒸餾法的研究」,碩士論文,國立台灣科技大學,台北(2011) 。
    【9】 Zhang, J., Dow, N., Duke, M., Ostarcevic, E., Li, J., and Gray, S., “Identification of material and physical features of membrane distillation membranes for high performance desalination”, Journal of Membrane Science, vol. 349, pp. 295-303, (2010)
    【10】 Findley, M. E., “Vaporization through porous membranes” I&EC Process Design and Development, vol. 6, pp. 226-230, (1967)
    【11】 Findley, M. E., Tanna, V. V., Rao, Y. B., and Yeh, C. L., “Mass and heat transfer relations in evaporation through porous membranes” AICHE J, vol. 15, pp. 483-489, (1969)
    【12】 Banat, A. F., and Jana, S., “Desalination by membrane distillation: a parametric study” Separation Science and Technology, vol. 33, pp. 201-226, (1998)
    【13】 Qtaishat, M, Rana, D., Khayet, M., and Matsuura, T., “Preparation and characterization of novel hydrophobic/hydrophilicpolyetherimide composite membranes for desalination by direct contact membrane distillation”, Journal of Membrane Science, vol. 327, pp. 264–273,(2009)
    【14】 Smolders, K., and Franken, A. C. M., “Terminology of membrane distillation” Desalination, vol. 72, pp. 249-262, (1989)
    【15】 邱正勳、郭興中、張振章,「薄膜分離應用技術專輯」,化工技術,第11卷,第12期(2003)。
    【16】 Lawson, W. K., and Lloyd, R. D., “Review Membrane distillation”, Journal of Membrane Science, vol. 124, pp. 1-25, (1997)
    【17】 林銘進,「開發薄膜蒸餾法的淡化設備」,碩士論文,國立成功大學,台南(2001)。
    【18】 Bourawi, M. S., Ding, Z., Ma, R., and Khayet, M., “A framework for better understanding membrane distillation separation process”, Journal of Membrane Science, vol. 285, pp. 4–29, (2006)
    【19】 Zhu, C., and Liu, G., “Modeling of ultrasonic enhancement on membrane distillation”, Jouranal of Membrane Science, vol. 176, pp. 31-41, (2000)
    【20】 Joachim, K., Marcel, W., and Matthias, R., “Membrane Seawater desalination”, Green Energy and Technology, chapter 7 distillation for solar desalination, Spring-Verlag Berlin Heidelberg, (2009)
    【21】 王許雲、張林、陳歡林,「膜蒸餾最新研究現狀與發展」,化工進展,第26卷,第2期(2007)。
    【22】 Khayet, M., “Membranes and theoretical modeling of membrane distillation : A review”, Advances in Colloid and Interface Science, vol. 164, pp. 56-88, (2010).
    【23】 Elashmawi, I. S., “Preparation of hollow fibre membranes from PVDF and PVP blends and their application in VMD,Materials”, Chemistry and Physics, vol. 107, pp. 96-100, (2008)
    【24】 Simone, S., Figoli, A., Criscuoli, A, Carnevale, M. C., Rosselli, A., and Drioli, E., “Effect of LiCl filler on the structure andmorphology of PVDF films”, Journal of Membrane Science, vol. 364, pp. 219-232, (2010)
    【25】 唐娜,「用於膜蒸餾的膜材料的現況」,化工進展,第22卷,第8期(2003)。
    【26】 李佳玲,「薄膜蒸餾之技術現況與應用發展」,化工技術,第20卷, 第四期,第123-139頁(2012)。
    【27】 Alklaibi, A. M., and Lior, N., “Membrane-distillation desalination: status and potential”, Desalination, vol. 171, pp. 111-131, (2004)
    【28】 Zhang, J., Dow, N., Duke, M., Ostarcevic, E., Li, J., and Gray, S., “Identi cation of material and physical features of membrane distillation membranes for high performance desalination”, Journal of Membrane Science, vol. 349, pp. 295-303, (2010)
    【29】 范舒晴,「聚醯胺與聚醯亞胺膜於滲透蒸發與蒸氣揮發之研究」,博士論文,中原大學,桃園(2004)。
    【30】 郭文正、曾添文,「薄膜分離」,高立圖書有限公司,第4-15頁, (1988)。
    【31】 Baker, R. W., “Membrane technology, and application”, McGraw-Hill Companies, pp. 545-565, (2000)
    【32】 Stern, S. A., Sinclaire, T. F., Gareis, P. J., Vahldieck, N. P., and Mohr, P. H., “Helium recovery by permeation”, Ind. Eng. Chem. Res, vol. 57 pp. 49~60, (1965)
    【33】 張淇芝,「基材備製對氣相成長碳纖維/管的影響」,碩士論文,國立成功大學,台南(2000年)。
    【34】 Formhals, A., “Process and apparatus for preparing artificial threads”, U.S. Patent., 1-975-504(1934)
    【35】 Larrondo, L., amd Manley, R., “Electrostatic Fiber spinning form polymer melts I Experimental observations on fiber formation and properties”, Journal of Polymer Science : Polymer Physics Edition, vol. 19, pp. 909-920, (1981)
    【36】 Reneker, D. H., and Chun, I., “Nanometer diameter fibers of polymer produced by electrospinning”, Nanotechnology, vol. 7, pp. 216-23, (1996)
    【37】 張之樺,「粒狀活性碳結合薄膜系統應用於自來水處理之研究」, 碩士論文,國立台北科技大學,台北(2000)。
    【38】 Nandana, B., and Subhas,C., “Electrospinning: A fascinating fiber fabrication technique”, Biotechnology Advances, vol. 28, pp. 325–347, (2010)
    【39】 Ramakrishna, S., and Matsuura, T., “Electrospun nanofibrous filtration membrane”, Journal of Membrane Science, vol. 281, pp. 581–586, (2006)
    【40】 Yoon, K., Kim, K., Wang, X., Fang, D., Hsiao, S., and Chu, B., “High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating”, Polymer, vol. 47, pp. 2434–2441, (2006)
    【41】 Sang, Y., Li, F., Gu, Q., Liang, C., and Chen, J., “Heavy metal-contaminated groundwater treatment by a novel nanofiber membrane”, Desalination , vol. 223, pp.349–360, (2006)
    【42】 Bjorge, D., Daels, N., Vrieze, S. D., Dejan, P., Camp, T. V., Audenaert, W., Hogie, J., Westbroek, P., Clerck, K. D., and Van, W. H., “Performance assessment of electrospun nanofibers for filter applications”, Desalination, vol. 249, pp. 942–948, (2009)
    【43】 Zhang, H., Nie, H., Yu, D., Wu, C., Zhang, Y., White, C. B., and Zhu, L., “Surface modification of electrospun polyacrylonitrile nanofibber towards developing an affinity membrane for bromelain adsorption”, Desalination, vol. 256, pp. 141-147, (2010)
    【44】 Ye, T., and Wu, M., “Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment”, Carbohydrate Polymers, vol. 83, pp. 743–748, (2011)
    【45】 Yuan, L., Wang, R, and Fane, G. A., “Fabrication of Bioinspired Composite Nanofiber Membranes with Robust Superhydrophobicity for Direct Contact Membrane”, Nanyang Environment and Water Research Institute, Nanyang Technological University, (2012)
    【46】 Tijing, L. D., Choi, J. S., Lee, S., Kim, S. H., and Shon, H. K., “Recent progress of membrane distillation using electrospun nanofibrous membrane”, Journal of Membrane Science, vol. 453, pp. 435-462, (2014)
    【47】 何宗仁、劉文宗,「膜蒸餾的原理與工業化應用」,化工技術,第七卷,第四期(1999)。
    【48】 陳詩鋒,「直接接觸薄膜蒸餾法的極化現象之研究」,碩士論文,國立成功大學,台南(1999)。
    【49】 藍智嵩,「核能熱化學產氫–碘硫循環:利用直接接觸薄膜蒸餾來濃縮氫碘酸」,碩士論文,國立清華大學,新竹(2008)。
    【50】 Feng, C., Khulbe, K. C., Matsuura, T., Gopal, R., Kaur, S., Ramakrishna, S., and Khayet, M., “Production of drinking water from saline water by air-gap membrane”, Journal of Membrane Science, vol. 311, pp. 1–6, (2008)
    【51】 Huo, R., Gu, Z., Zuo, K., and Zhao, G., “Preparation and properties of PVDF-fabric composite membrane for membrane distillation”, Desalination, vol. 249, pp. 910–913, (2009)
    【52】 Khayet, M., Cojocaru, C., and Garcia-Payo, M. C., “Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation”, Journal of Membrane Science, vol. 351, pp. 234–245, (2010)
    【53】 Cheng, T. W., Han, C. J., Hwang, K. J., Ho, C. D., and William, J., “Influence of Feed Composition on Distillate Flux and Membrane Fouling in Direct Contact Membrane Distillation”, Separation Science and Technology, vol. 45, pp. 967–974, (2010)
    【54】 Ke, H., Hwang, J. H., and Shik, I. M., “Air gap membrane distillation on the different types of membrane”, Korean J. Chem. Eng, vol. 28, pp. 770-777, (2011)
    【55】 Rasha, B. S., Edward, K. S., Arafat, H. A., John, H., and Lienhard, V., “Economic evaluation of stand-alone solar powered membrane distillation systems”, Desalination, vol. 299, pp. 55-62, (2012)
    【56】 Khayet, M., “Treatment of radioactive wastewater solutions by direct contact membrane distillation using surface modified membranes”, Desalination, vol. 321, pp. 60-66, (2013)
    【57】 Wu, H. Y., Wang, R., and Field, R. W., “Direct contact membrane distillation: An experimental and analytical investigation of the effect of membrane thickness upon transmembrane flux”, Journal of Membrane Science, vol. 470, pp. 257-265, (2014)
    【58】 Tijing, L. D., Woo, Y. C., Johir, A. H., Cho, J. S., and Shon, H. K., “A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation”, Chemical Engineering Journal, vol. 256, pp. 155-159, (2014)
    【59】 Banat, F. A., “Membrane Distillation for Desalination and Removal of Volatile OrganicCompounds from Water”, Doctoral Dissertation, McGill University, (1994)
    【60】 Schofield, R. W., Fane, A. G., and Fell, C. J. D., “Heat and mass transfer in membrane distillation”, Journal of Membrane Science, vol. 33, pp. 299-313, (1987)
    【61】 Qtaishat, M., Matsuura, T., Kruczek, B., Khayet, M., “Heat and mass transfer analysis in direct contact membrane distillation”, Desalination, vol. 219, pp. 272–292, (2008)
    【62】 劉菊蓮,「直接接觸薄膜蒸餾法之熱質傳研究」,碩士論文,國立清華大學,新竹(2009)。
    【63】 Shin, Y. M., HO, M. M., Brenner, M. P., and Rutledge, G. C., “Electrospinning : a whipping fluid jet generates submicron polymer fibers”, Appl Phys Lett, vol. 78, pp. 1-3, (2001)
    【64】 Doshi, J., and Darrell, H. R., “Electrospinning process and applications of electrospun fibers”, Journal of Electrostatics, vol. 35, pp. 151-160, (1995)
    【65】 A. S. f. T. a. Materials(ASTM), “Standard Test Methods for Mass Per Unit Area (Weight) of Fabric”, vol. D3776/D3776M-09a, ed(2011)
    【66】 A. S. f. T. a. Material(ASTM), “Standard Test Method for Breaking Force and Elongation of Textile Fabrics(Strip Method) ”, vol.D5035-11, ed(2013)
    【67】 C.N.S, 蒸氣壓縮式冰水機組, vol. 12575, B4072, (2012)

    無法下載圖示 全文公開日期 2020/02/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE