簡易檢索 / 詳目顯示

研究生: 翁仲毅
Chung-Yi Weng
論文名稱: 設計具有空間電荷與高幾何梯度之非對稱異質薄膜實現超高效鹽差能源發電
Engineered Asymmetric Heterogeneous Membranes with Space Charges and High Geometric Gradients for Ultrahigh-Performance Salinity Gradient Power Generation
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 黃俊仁
Chun-Jen Huang
黃俊仁
Chun-Jen Huang
蔡德豪
De-Hao Tsai
邱昱誠
Yu-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 105
中文關鍵詞: 奈米流體學水凝膠離子傳輸滲透能源轉換離子電流整流氧化鋁奈米通道薄膜
外文關鍵詞: Nanofluidics, Hydrogel, Ion transport, Osmotic energy conversion, Ion current rectification, Alumina nanochannel membrane
相關次數: 點閱:360下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鹽差能源(或稱滲透能源),係指在具離子選擇性的奈米孔/奈米通道薄膜的幫助下,藉由逆向電滲析將儲存於鹽差中的能量轉換成電能,由於其能源取得非常環保,且蘊含於海洋/河口或鹽湖/河口的交界處,使得這類能源受到許多人的關注。在早期的研究中,鹽差能源的收集多採用具表面電荷的奈米通道膜,然而這類奈米通道膜皆因離子選擇性不足和質傳速率(或薄膜電導)低下之因素,其能源輸出仍低於可商用化之基準(5 W/m2)。直到最近,才有研究指出若使用具空間電荷的奈米通道薄膜,有效地解決上述兩個主要問題。受此啟發,我們設計了由(2-甲基丙烯醯基氧乙基)三甲基氯化銨(TMAEMA)水凝膠及高度有序分枝型氧化鋁奈米通道膜(BANM)組成的新型非對稱異質膜。前者可賦予異質膜帶有局部空間電荷,而後者可以增加異質膜的幾何梯度。實驗結果顯示TMAEMA@BANM異質膜具有高陰離子選擇性與類二極體之離子整流行為,此結果同時也能被我們模擬預測之數值趨勢所佐證。因此我們進一步將此離子二極體薄膜(TMAEMA@BANM)應用於鹽差能源轉換。令人驚訝的是,TMAEMA@BANM異質膜於仿造海水和河水的鹽差 (500 mM/10 mM NaCl之濃度差) 下,可獲取前所未有高的8.08 W/m2滲透能源獲取功率。更出奇的是,此獲取功率還可於仿造鹽湖和河水的鹽差 (5000 mM/10 mM NaCl之濃度差) 下,進一步提升到約46.9 W/m2的超高功率。很顯然地,上述兩個能源轉換輸出功率都超越了所有過去先進離子選擇膜系統所得到的結果。本論文之研究成果闡明了具空間電荷、高幾何梯度和二極體離子傳輸特性的離子選擇膜設計對於次世代超高效滲透發電裝置之開發至關重要。


    Salinity gradient power (or known as osmotic power), where energy stored in a salinity gradient can be converted into electricity by reverse electrodialysis with the assistance of ion-selective nanopore/nanochannel membranes has drawn much attention because this type of energy resource is eco-friendly and abundant at sea/river or salt-lake/river interfaces. In the early-stage researches, nanochannel membranes with surface charges were mostly used to collect salinity gradient power; however, most of energy outputs achieved were still below the commercial benchmark (5 W/m2) because of the insufficient ion selectivity and low mass transportation rate (or membrane conductance). Until recently, it has been shown that nanochannel membranes with space charges are capable of resolving the above-mentioned two main problems. Inspired by this, we engineer the novel asymmetric heterogeneous membranes, consisting of 2-trimethylammonium ethyl methacrylate chloride (TMAEMA) hydrogel and highly ordered branched alumina nanochannel membrane (BANM). The former can render the composite membrane locally space-charged and the latter can increase the geometric gradient of the membrane. Experimental results obtained reveal that the TMAEMA@BANM heterogeneous membrane is of high anion selectivity and shows the diode-like ion transport behavior, which is supported by our modeling prediction. We then apply the ionic diode membrane, TMAEMA@BANM, in salinity gradient power conversion. Amazingly, we show that the TMAEMA@BANM can achieve an unprecedented power of 8.08 W/m2 by mixing artificial seawater and river water (500 mM/10 mM NaCl gradient). More surprisingly, the power produced can be further upgraded to an ultrahigh value of about 46.9 W/m2 by mixing salt lake water and river water (5000 mM/10 mM NaCl gradient). Both the values of the generated salinity gradient powers apparently outperform the previously reported values from all the state-of-the-art ion-selective membranes. These findings reported indicate that the design of ion-selective membranes with space charges, high geometry gradient and ionic diode transport property is of crucial importance towards the next-generation ultrahigh performance osmotic power generators.

    目錄 中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 第二章 原理機制 10 2.1 高幾何梯度離子傳輸路徑 10 2.2 電雙層 11 2.3 離子選擇性 14 2.4 離子電流整流 15 2.5 鹽差能源轉換(滲透能源轉換) 18 2.6 陰離子遷移數(tn)與能源轉換效率(ηmax) 21 第三章 實驗設備與方法 23 3.1 實驗藥品與設備 23 3.1.1 實驗藥品 23 3.1.2 製程設備 25 3.1.3 實驗架設 26 3.1.4 分析儀器 28 3.2實驗製備與量測方法 29 3.2.1 圓柱型陽極氧化鋁奈米通道薄膜製備流程 29 3.2.2 分支型陽極氧化鋁奈米通道薄膜製備流程 31 3.2.3 TMAEMA水凝膠薄膜製備流程 34 3.2.4 離子傳輸行為實驗 35 3.2.5 鹽差梯度能源轉換實驗 36 第四章 理論模擬 37 4.1 系統描述 37 4.2 主控方程式 38 4.3 邊界條件 39 4.4 系統離子電流計算 40 第五章 結果與討論 42 5.1 陽極氧化鋁奈米通道薄膜與TMAEMA水凝膠膜分析 42 5.1.1 SEM分析結果 42 5.1.2 EDX分析結果 43 5.1.3 FTIR分析結果 43 5.1.4 接觸角分析結果 44 5.1.5 EDX mapping 44 5.2 TMAEMA@BANM異質膜之離子傳輸行為分析 45 5.2.2 理論模擬 45 5.2.1 離子電流整流行為 45 5.2.3 TMAEMA@BANM電導量測結果 46 5.3 TMAEMA@BANM異質膜於鹽差梯度能源轉換之應用 46 5.3.1 鹽差梯度能源轉換實驗配置(preferential configuration) 46 5.3.2 擴散電位(Vdiff)與擴散電流(Idiff) 47 5.3.3 真實功率密度輸出 49 第六章 結論 80 參考文獻 81   表目錄 表1-1、近年鹽差能源轉換使用材料及其效能統整表格 9 表2-1、孔道表面電雙層厚度( )與KCl電解質溶液本體濃度(C0)間的關係[50] 13 表3-1、製備陽極氧化鋁奈米通道薄膜所需之化學藥品及材料表 23 表3-2、備水凝膠所需之化學藥品。 24 表3-3、製備次微米尺度圓錐形孔道所需化學藥品及材料表。 25 表4-1、TMAEMA@BANM異質模理論模擬邊界條件。 41 表5-1、TMAEMA/PA之EDX分析元素組成表 55 表5-2、不同鹽差梯度下還原電位量測結果,使用溶液為KCl。 64 表5-4、TMAEMA@BANM(This work)於仿造海水(500 mM NaCl)/河水(10 mM NaCl)鹽差梯度下之能源轉換功率密度文獻比較整理表格。 74 表5-5、TMAEMA@BANM(This work)於仿造鹽湖(5000 mM NaCl)/河水(10 mM NaCl)鹽差梯度下之能源轉換功率密度文獻比較整理表格。 77   圖目錄 圖1-1、電鰻體內細胞離子傳輸通道示意圖[11]。 2 圖1-2、鹽差梯度能源轉換示意圖。 3 圖1-3、文獻使用材料之示意圖。(a)Gao等人使用陽極氧化鋁(Macro A)薄膜作為基材,將奈米尺度碳(Meso C)材塗佈置基材形成異質膜(取自文獻[30]),(b)Li等人將PSS與MOF混合後改質至陽極氧化鋁薄膜上形成異質膜(取自文獻[39]),(c)Zhang等人將ANF嵌入Mxene層與層間形成複合膜(取自文獻[40])。 6 圖1-4、文獻使用材料之示意圖。(a)Zhang等人使用ANF作為基材,hydrogel(agarose)作為選擇層製備異質膜(取自文獻[31]),(b)Chen等人製備之HEMAP均質膜(取自文獻[41])。 7 圖1-5、文獻回顧(取自文獻[42])。(a)奈米通道示意圖,(b)不同幾何梯度下之功率密度輸出,幾何梯度越大功率密度輸出越大。 8 圖2-1、TMAEMA@BANM異質膜離子傳輸路徑示意圖。 11 圖2-2、固體材料於電解質溶液中表面帶正電之電雙層示意圖。 12 圖2-3、孔道於不同濃度電解質溶液中電雙層分布情形。(a)在低濃度電解質溶液中電雙層重疊,孔道內充滿與孔道表面帶相反電性之離子(陰離子),(b)在高濃度電解質溶液中電雙層不重疊,孔道內陰、陽離子濃度相近,遠離孔道表面區域的離子分布趨於本體溶液狀態。 14 圖2-4、對稱型奈米通道離子傳輸示意圖,圖中箭頭符號長短表示離子通量大小。(a)對稱孔道內離子分布狀況,孔道內並無發生離子累積、耗盡情形,(b)對稱型孔道電流量測之電流-電壓曲線圖,其電流量測結果呈線性斜直線,離子傳輸屬於歐姆行為。 16 圖2-5、分枝型(非對稱)奈米通道離子傳輸示意圖,圖中箭頭符號長短表示離子通量大小。(a)於小孔通道施加正偏壓時離子系統出現離子耗盡現象;施加負偏壓時系統出現離子累積現象,(b)非對稱奈米通道之電流-電壓曲線示意圖,其電流量測結果偏離線性斜直線,離子傳輸行為屬於離子電流整流行為。 17 圖2-6、鹽差發電(滲透能源轉換)示意圖。 19 圖2-7、鹽差發電之電流-電壓量測結果(I-V curve)示意圖。 20 圖2-8、真實功率密度輸出示意圖。 21 圖3-1、離子傳輸行為之電流量測實驗架設示意圖。 27 圖3-2、鹽差發電實驗架設示意圖。 28 圖3-3、圓柱型陽極氧化鋁奈米通道薄膜(CANM)製備流程圖。 31 圖3-4、分枝型陽極氧化鋁奈米通道薄膜(BANM)製備流程圖。 34 圖4-1、TMAEMA@BANM異質膜模型(非真實比例),其中TMAEMA即為模型中之聚電解質層。 38 圖4-2、TMAEMA@BANM異質膜系統理論模擬邊界條件示意圖(非真實比例)。 40 圖5-1、圓柱型氧化鋁奈米通道薄膜SEM結果。(a)上方(Top side)正面SEM圖,(b)下方(Bottom side)正面SEM圖,(c)圓柱型氧化鋁奈米通道薄膜SEM截面圖,(d)截面放大圖,由圖中可觀察到規則有序之圓柱形孔道。 53 圖5-2、分枝型氧化鋁奈米通道薄膜SEM結果。(a)大孔端(Stem side)正面SEM圖 (b)小孔端(Branched side)正面SEM圖 (c)分枝型氧化鋁奈米通道薄膜SEM截面圖 (d)截面放大圖,由圖可清楚觀察到分層結構,上層為小孔通道(Branched channels),下層為大孔通道(Stem channels)。 54 圖5-3、TMAEMA/PA水凝膠膜之EDX分析結果。(a)TMAEMA表面SEM圖,(b)EDX元素分析圖。 55 圖5-4、TMAEMA/PA膜之FTIR分析結果圖。 56 圖5-5、圓柱型陽極氧化鋁薄膜、分枝型陽極氧化鋁薄膜及TMAEMA薄膜之接觸角分析結果。(a)圓柱型陽極氧化鋁薄膜接觸角結果圖,(b)分枝型陽極氧化鋁薄膜大孔端(Stem side)接觸角結果分析,(c)分枝型陽極氧化鋁薄膜小孔端(Branched side)接觸角結果分析。(d)TMAEMA薄膜接觸角結果分析。 57 圖5-6、TMAEMA浸泡於100 mM KCl溶液30分鐘之樣品EDX mapping分析結果。 58 圖5-7、TMAEMA@BANM異質膜離子傳輸行為結果分析。(a)TMAEMA@BANM異質膜於10 mM KCl環境下,電壓1.5 V範圍內之電流量測結果,(b)TMAEMA@BANM於10 mM KCl環境下,電流量測範圍為1.5 V之模擬結果。從電流量測結果可以發現TMAEMA@BANM具離子電流整流行為,且其趨勢與模擬結果相符。 59 圖5-8、TMAEMA@BANM異質膜於10 mM KCl環境下之模擬結果。(a)軟體計算出異質膜於電壓1.5 V範圍內之相應電流,(b)工作電極設置於TMAEMA端,施予系統1.5 V偏壓時孔道內離子濃度分佈圖。 60 圖5-9、TMAEMA@BANM異質膜電導量測結果。 61 圖5-10、TMAEMA@BANM鹽差梯度能源轉換實驗配置圖。 62 圖5-11、高濃度3000 mM、低濃度1 mM鹽差梯度下量測I-V curve。粉紅色線為TMAEMA@BANM於此鹽差梯度下測得結果,從X軸截距及Y軸截距可以讀得開路電位及短路電流數值,當扣除還原電位後可得到綠色線,從綠色線X軸截距及Y軸截距可以讀得擴散電位及擴散電流數值。 63 圖5-12、TMAEMA@BANM異質膜於不同鹽濃差梯度下之擴散電位與擴散電流量測結果。 65 圖5-13、TMAEMA@BANM異質膜能源轉換效率與鹽差梯度關係圖。 66 圖5-14、TMAEMA@BANM異質膜離子選擇性與鹽差梯度關係圖。 67 圖5-15、TMAEMA分別面stem side及branched side於500 mM NaCl /10 mM NaCl鹽差梯度下之能源輸出結果。(a)Case I及Case II之I-V curve量測結果,(b)Case I及Case II之電流密度圖,(c)Case I及Case II之功率密度圖,(d)Case I及Case II 最大功率密度輸出之比較。 68 圖5-16、BANM、TMAEMA及TMAEMA@BANM異質膜於500 mM NaCl /10 mM NaCl鹽差梯度下之能源輸出結果比較。(a)Case I、Case II及Case III之I-V curve量測結果,(b)Case I、Case II及Case III之電流密度圖,(c)Case I、Case II及Case III之功率密度圖,(d)Case I、Case II及Case III最大功率密度輸出之比較。 69 圖5-17、TMAEMA@CANM異質膜及TMAEMA@BANM異質膜於500 mM NaCl/10 mM NaCl鹽差梯度下之能源輸出結果比較。(a) Case I及Case II之I-V curve量測結果,(b) Case I及Case II之電流密度圖,(c)Case I及Case II之功率密度圖,(d)Case I及Case II 最大功率密度輸出之比較。 70 圖5-18、TMAEMA@BANM異質膜於不同鹽差梯度下之能源轉換輸出。(a)鹽差梯度為5倍、50倍、500倍之電流密度圖,(b)鹽差梯度為5倍、50倍、500倍之功率密度圖,(c)鹽差梯度為5倍、50倍、500倍之功率密度比較長條圖,(d)鹽差梯度為5倍、50倍、500倍之功率密度及能源轉換效率趨勢圖。 71 圖5-19、TMAEMA@BANM(This work)於仿造海水(500 mM NaCl)/河水(10 mM NaCl)鹽差梯度下之能源轉換功率密度文獻比較圖(圖中虛線為商用基準值5 W/m2)。[30, 32, 40, 41, 44-46, 63-67] 73 圖5-20、TMAEMA@BANM(This work)與文獻於仿造鹽湖(5000 mM NaCl)/河水(10 mM NaCl)鹽差梯度下之能源轉換功率密度比較圖。[41, 45, 46, 53, 63-65, 67] 76 圖5-21、TMAEMA@BANM異質膜於不同量測面積下之真實功率密度輸出(50倍鹽差梯度)。(a)量測面積為0.03 mm2之真實功率密度輸出,(b)量測面積為0.196 mm2之真實功率密度輸出,(c)量測面積為0.785 mm2之真實功率密度輸出,(d)不同量測面積之真實功率密度比較長條圖。 78 圖5-22、TMAEMA@BANM異質膜選擇層厚度效應,不同選擇層厚度於50倍鹽差梯度下之功率密度圖及其比較。(a)選擇層厚度為0.3 mm之功率密度圖,(b)選擇層厚度為0.5 mm之功率密度圖,(c)選擇層厚度為0.9 mm之功率密度圖,(d)選擇層厚度為2 mm之功率密度圖,(e)不同選擇層厚度之功率密度比較長條圖。 79

    [1] Mekhilef, S.; Saidur, R.; Safari, A., A Review on Solar Energy Use in Industries. Renewable Sustainable Energy Rev. 2011, 15, 1777-1790.
    [2] Kannan, N.; Vakeesan, D., Solar Energy for Future World:-A Review. Renewable Sustainable Energy Rev. 2016, 62, 1092-1105.
    [3] Herbert, G. J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S., A Review of Wind Energy Technologies. Renewable Sustainable Energy Rev. 2007, 11, 1117-1145.
    [4] Ackermann, T.; Söder, L., Wind Energy Technology and Current Status: A Review. Renewable Sustainable Energy Rev. 2000, 4, 315-374.
    [5] Bakis, R., The Current Status and Future Opportunities of Hydroelectricity. Energy Sources, Part B 2007, 2, 259-266.
    [6] Özcan, E. C.; Ünlüsoy, S.; Eren, T., A Combined Goal Programming–AHP Approach Supported with Topsis for Maintenance Strategy Selection in Hydroelectric Power Plants. Renewable Sustainable Energy Rev. 2017, 78, 1410-1423.
    [7] Nieva, D.; Nieva, R., Developments in Geothermal Energy in Mexico—Part Twelve. A Cationic Geothermometer for Prospecting of Geothermal Resources. Heat Recovery Syst. CHP 1987, 7, 243-258.
    [8] Brophy, P., Environmental Advantages to the Utilization of Geothermal Energy. Renewable Energy 1997, 10, 367-377.
    [9] Ali, M.; Yameen, B.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O., Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. J. Am. Chem. Soc. 2008, 130, 16351-16357.
    [10] Wen, L.; Tian, Y.; Ma, J.; Zhai, J.; Jiang, L., Construction of Biomimetic Smart Nanochannels with Polymer Membranes and Application in Energy Conversion Systems. Phys. Chem. Chem. Phys. 2012, 14, 4027-4042.
    [11] Sui, X.; Zhang, Z.; Li, C.; Gao, L.; Zhao, Y.; Yang, L.; Wen, L.; Jiang, L., Engineered Nanochannel Membranes with Diode-Like Behavior for Energy Conversion over a Wide pH Range. ACS Appl. Mater. Interfaces 2018, 11, 23815-23821.
    [12] Zhang, H.; Tian, Y.; Jiang, L., Fundamental Studies and Practical Applications of Bio-Inspired Smart Solid-State Nanopores and Nanochannels. Nano Today 2016, 11, 61-81.
    [13] Zhang, Z.; Wen, L.; Jiang, L., Bioinspired Smart Asymmetric Nanochannel Membranes. Chem. Soc. Rev. 2018, 47, 322-356.
    [14] Cong, H.; Wang, J.; Yu, B.; Tang, J., Preparation of a Highly Permeable Ordered Porous Microfiltration Membrane of Brominated poly (phenylene oxide) on an Ice Substrate by the Breath Figure Method. Soft Matter 2012, 8, 8835-8839.
    [15] Li, R.; Fan, X.; Liu, Z.; Zhai, J., Smart Bioinspired Nanochannels and Their Applications in Energy‐Conversion Systems. Adv. Mater. 2017, 29, 1702983.
    [16] Tian, Y.; Wen, L.; Hou, X.; Hou, G.; Jiang, L., Bioinspired Ion‐Transport Properties of Solid‐State Single Nanochannels and Their Applications in Sensing. ChemPhysChem 2012, 13, 2455-2470.
    [17] Ramon, G. Z.; Feinberg, B. J.; Hoek, E. M., Membrane-Based Production of Salinity-Gradient Power. Energy Environ. Sci. 2011, 4, 4423-4434.
    [18] Brauns, E., Salinity Gradient Power by Reverse Electrodialysis: Effect of Model Parameters on Electrical Power Output. Desalination 2009, 237, 378-391.
    [19] Post, J. W.; Veerman, J.; Hamelers, H. V.; Euverink, G. J.; Metz, S. J.; Nymeijer, K.; Buisman, C. J., Salinity-Gradient Power: Evaluation of Pressure-Retarded Osmosis and Reverse Electrodialysis. J. Membr. Sci. 2007, 288, 218-230.
    [20] She, Q.; Jin, X.; Tang, C. Y., Osmotic Power Production from Salinity Gradient Resource by Pressure Retarded Osmosis: Effects of Operating Conditions and Reverse Solute Diffusion. J. Membr. Sci. 2012, 401, 262-273.
    [21] Vermaas, D. A.; Veerman, J.; Yip, N. Y.; Elimelech, M.; Saakes, M.; Nijmeijer, K., High Efficiency in Energy Generation from Salinity Gradients with Reverse Electrodialysis. ACS Sustainable Chem. Eng. 2013, 1, 1295-1302.
    [22] Noskov, S. Y.; Roux, B., Ion Selectivity in Potassium Channels. Biophys. Chem. 2006, 124, 279-291.
    [23] Siwy, Z. S., Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 2006, 16, 735-746.
    [24] Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R., Conical-Nanotube Ion-Current Rectifiers: The Role of Surface Charge. J. Am. Chem. Soc. 2004, 126, 10850-10851.
    [25] Apel, P. Y.; Blonskaya, I. V.; Orelovitch, O. L.; Ramirez, P.; Sartowska, B. A., Effect of Nanopore Geometry on Ion Current Rectification. Nanotechnology 2011, 22, 175302.
    [26] Siwy, Z.; Apel, P.; Baur, D.; Dobrev, D. D.; Korchev, Y. E.; Neumann, R.; Spohr, R.; Trautmann, C.; Voss, K.-O., Preparation of Synthetic Nanopores with Transport Properties Analogous to Biological Channels. Surf. Sci. 2003, 532-535, 1061-1066.
    [27] Hong, H.; Szabo, G.; Tamm, L. K., Electrostatic Couplings in OmpA Ion-Channel Gating Suggest a Mechanism for Pore Opening. Nat. Chem. Biol. 2006, 2, 627-635.
    [28] Guo, J.; Yang, L.; Xu, H.; Zhao, C.; Dai, Z.; Gao, Z.; Song, Y., Biomineralization-Driven Ion Gate in TiO2 Nanochannel Arrays for Cell H2S Sensing. Anal. Chem. 2019, 91, 13746-13751.
    [29] Guo, W.; Tian, Y.; Jiang, L., Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores. Acc. Chem. Res. 2013, 46, 2834-2846.
    [30] Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L., High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.
    [31] Zhang, Z.; He, L.; Zhu, C.; Qian, Y.; Wen, L.; Jiang, L., Improved Osmotic Energy Conversion in Heterogeneous Membrane Boosted by Three-Dimensional Hydrogel Interface. Nat. Commun. 2020, 11, 875.
    [32] Zhao, X.; Lu, C.; Yang, L.; Chen, W.; Xin, W.; Kong, X.-Y.; Fu, Q.; Wen, L.; Qiao, G.; Jiang, L., Metal Organic Framework Enhanced SPEEK/SPSF Heterogeneous Membrane for Ion Transport and Energy Conversion. Nano Energy 2021, 81, 105657.
    [33] Zhang, Z.; Kong, X. Y.; Xiao, K.; Xie, G.; Liu, Q.; Tian, Y.; Zhang, H.; Ma, J.; Wen, L.; Jiang, L., A Bioinspired Multifunctional Heterogeneous Membrane with Ultrahigh Ionic Rectification and Highly Efficient Selective Ionic Gating. Adv. Mater. 2016, 28, 144-150.
    [34] Xin, W.; Zhang, Z.; Huang, X.; Hu, Y.; Zhou, T.; Zhu, C.; Kong, X.-Y.; Jiang, L.; Wen, L., High-Performance Silk-Based Hybrid Membranes Employed for Osmotic Energy Conversion. Nat. Commun. 2019, 10, 3876.
    [35] Liu, Y.-C.; Yeh, L.-H.; Zheng, M.-J.; Wu, K. C.-W., Highly Selective and High-Performance Osmotic Power Generators in Subnanochannel Membranes Enabled by Metal-Organic Frameworks. Sci. Adv. 2021, 7, eabe9924.
    [36] Zhu, X.; Zhou, Y.; Hao, J.; Bao, B.; Bian, X.; Jiang, X.; Pang, J.; Zhang, H.; Jiang, Z.; Jiang, L., A Charge-Density-Tunable Three/Two-Dimensional Polymer/Graphene Oxide Heterogeneous Nanoporous Membrane for Ion Transport. ACS Nano 2017, 11, 10816-10824.
    [37] Pattle, R., Production of Electric Power by Mixing Fresh and Salt Water in the Hydroelectric Pile. Nature 1954, 174, 660-660.
    [38] Weinstein, J. N.; Leitz, F. B., Electric Power from Differences in Salinity: The Dialytic Battery. Science 1976, 191, 557-559.
    [39] Li, R.; Jiang, J.; Liu, Q.; Xie, Z.; Zhai, J., Hybrid Nanochannel Membrane Based on Polymer/MOF for High-Performance Salinity Gradient Power Generation. Nano Energy 2018, 53, 643-649.
    [40] Zhang, Z.; Yang, S.; Zhang, P.; Zhang, J.; Chen, G.; Feng, X., Mechanically Strong MXene/Kevlar Nanofiber Composite Membranes as High-Performance Nanofluidic Osmotic Power Generators. Nat. Commun. 2019, 10, 2920.
    [41] Chen, W.; Wang, Q.; Chen, J.; Zhang, Q.; Zhao, X.; Qian, Y.; Zhu, C.; Yang, L.; Zhao, Y.; Kong, X.-Y., Improved Ion Transport and High Energy Conversion through Hydrogel Membrane with 3D Interconnected Nanopores. Nano Lett. 2020, 20, 5705-5713.
    [42] Kuang, Z.; Zhang, D.; Shen, Y.; Long, R.; Liu, Z.; Liu, W., Bioinspired Fractal Nanochannels for High-Performance Salinity Gradient Energy Conversion. J. Power Sources 2019, 418, 33-41.
    [43] Zhang, Z.; Kong, X.-Y.; Xiao, K.; Liu, Q.; Xie, G.; Li, P.; Ma, J.; Tian, Y.; Wen, L.; Jiang, L., Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device. J. Am. Chem. Soc. 2015, 137, 14765-14772.
    [44] Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
    [45] Wu, Y.; Xin, W.; Kong, X.-Y.; Chen, J.; Qian, Y.; Sun, Y.; Zhao, X.; Chen, W.; Jiang, L.; Wen, L., Enhanced Ion Transport by Graphene Oxide/Cellulose Nanofibers Assembled Membranes for High-Performance Osmotic Energy Harvesting. Mater. Horiz. 2020, 7, 2702-2709.
    [46] Hou, S.; Zhang, Q.; Zhang, Z.; Kong, X.; Lu, B.; Wen, L.; Jiang, L., Charged Porous Asymmetric Membrane for Enhancing Salinity Gradient Energy Conversion. Nano Energy 2021, 79, 105509.
    [47] Zhou, S.; Xie, L.; Zhang, L.; Wen, L.; Tang, J.; Zeng, J.; Liu, T.; Peng, D.; Yan, M.; Qiu, B., Interfacial Super-Assembly of Ordered Mesoporous Silica–Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. ACS Appl. Mater. Interfaces 2021, 13, 8782-8793.
    [48] Tadmor, R.; Hernández-Zapata, E.; Chen, N.; Pincus, P.; Israelachvili, J. N., Debye Length and Double-Layer Forces in Polyelectrolyte Solutions. Macromolecules 2002, 35, 2380-2388.
    [49] Kohonen, M. M.; Karaman, M. E.; Pashley, R. M., Debye Length in Multivalent Electrolyte Solutions. Langmuir 2000, 16, 5749-5753.
    [50] Schoch, R. B.; Han, J.; Renaud, P., Transport Phenomena in Nanofluidics. Rev. Mod. Phys. 2008, 80, 839-883.
    [51] Yeh, L. H.; Chen, F.; Chiou, Y. T.; Su, Y. S., Anomalous pH‐Dependent Nanofluidic Salinity Gradient Power. Small 2017, 13, 1702691.
    [52] Xiong, T.; Zhang, K.; Jiang, Y.; Yu, P.; Mao, L., Ion Current Rectification: From Nanoscale to Microscale. Science China Chemistry 2019, 62, 1346-1359.
    [53] Zhu, X.; Hao, J.; Bao, B.; Zhou, Y.; Zhang, H.; Pang, J.; Jiang, Z.; Jiang, L., Unique Ion Rectification in Hypersaline Environment: A High-Performance and Sustainable Power Generator System. Sci. Adv. 2018, 4, eaau1665.
    [54] Yeh, L.-H.; Zhang, M.; Qian, S., Ion Transport in a pH-Regulated Nanopore. Anal. Chem. 2013, 85, 7527-7534.
    [55] Ma, Y.; Yeh, L.-H.; Qian, S., pH-Regulated Ionic Conductance in a Nanopore. Electrochem. Commun. 2014, 43, 91-94.
    [56] Ma, Y.; Yeh, L.-H.; Lin, C.-Y.; Mei, L.; Qian, S., pH-Regulated Ionic Conductance in a Nanochannel with Overlapped Electric Double Layers. Anal. Chem. 2015, 87, 4508-4514.
    [57] Vlassiouk, I.; Smirnov, S.; Siwy, Z., Ionic Selectivity of Single Nanochannels. Nano Lett. 2008, 8, 1978-1985.
    [58] Yeh, L.-H.; Zhang, M.; Qian, S.; Hsu, J.-P.; Tseng, S., Ion Concentration Polarization in Polyelectrolyte-Modified Nanopores. J. Phys. Chem. C 2012, 116, 8672-8677.
    [59] Huang, W.-C.; Hsu, J.-P., Regulating the Ionic Current Rectification Behavior of Branched Nanochannels by Filling Polyelectrolytes. J. Colloid Interface Sci. 2019, 557, 683-690.
    [60] Yeh, L.-H.; Huang, Z.-Y.; Liu, Y.-C.; Deng, M.-J.; Chou, T.-H.; Yang, H.-C. O.; Ahamad, T.; Alshehri, S. M.; Wu, K. C.-W., A Nanofluidic Osmotic Power Generator Demonstrated in Polymer Gel Electrolytes with Substantially Enhanced Performance. J. Mater. Chem. A 2019, 7, 26791-26796.
    [61] Zeng, Z.; Yeh, L.-H.; Zhang, M.; Qian, S., Ion Transport and Selectivity in Biomimetic Nanopores with pH-Tunable Zwitterionic Polyelectrolyte Brushes. Nanoscale 2015, 7, 17020-17029.
    [62] Milne, Z.; Yeh, L.-H.; Chou, T.-H.; Qian, S., Tunable Donnan Potential and Electrokinetic Flow in a Biomimetic Gated Nanochannel with pH-Regulated Polyelectrolyte Brushes. J. Phys. Chem. C 2014, 118, 19806-19813.
    [63] Xin, W.; Xiao, H.; Kong, X.-Y.; Chen, J.; Yang, L.; Niu, B.; Qian, Y.; Teng, Y.; Jiang, L.; Wen, L., Biomimetic Nacre-Like Silk-Crosslinked Membranes for Osmotic Energy Harvesting. ACS Nano 2020, 14, 9701-9710.
    [64] Zhao, Y.; Wang, J.; Kong, X.-Y.; Xin, W.; Zhou, T.; Qian, Y.; Yang, L.; Pang, J.; Jiang, L.; Wen, L., Robust Sulfonated poly (ether ether ketone) Nanochannels for High-Performance Osmotic Energy Conversion. Natl. Sci. Rev. 2020, 7, 1349-1359.
    [65] Chen, J.; Xin, W.; Kong, X.-Y.; Qian, Y.; Zhao, X.; Chen, W.; Sun, Y.; Wu, Y.; Jiang, L.; Wen, L., Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion. ACS Energy Lett. 2019, 5, 742-748.
    [66] Xiao, T.; Ma, J.; Liu, Z.; Lu, B.; Jiang, J.; Nie, X.; Luo, R.; Jin, J.; Liu, Q.; Li, W., Tunable Rectifications in Nanofluidic Diodes by Ion Selectivity of Charged Polystyrene Opals for Osmotic Energy Conversion. J. Mater. Chem. A 2020, 8, 11275-11281.
    [67] Zhu, C.; Liu, P.; Niu, B.; Liu, Y.; Xin, W.; Chen, W.; Kong, X.-Y.; Zhang, Z.; Jiang, L.; Wen, L., Metallic Two-Dimensional MoS2 Composites as High-Performance Osmotic Energy Conversion Membranes. J. Am. Chem. Soc. 2021, 143, 1932-1940.

    QR CODE