帳號:guest(3.236.13.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者姓名(中文):黃名琇
作者姓名(英文):Ming-Hsiu Huang
論文名稱(中文):混摻性二維材料之合成及應用於鋅空氣燃料電池
論文名稱(外文):Synthesis of hybrid 2D material and its application in Zn-air battery
指導教授姓名(中文):張家耀
指導教授姓名(英文):Jia-Yaw Chang
口試委員姓名(中文):何郡軒
江佳穎
口試委員姓名(英文):Jinn-Hsuan Ho
Chia-Ying Chiang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學號:m10706146
出版年(民國):109
畢業學年度:108
學期:2
語文別:中文
論文頁數:68
中文關鍵詞:鋅空氣電池空氣陰極觸媒氣凝膠GOMXene/g-C3N4
外文關鍵詞:Zn-air batteryair cathode catalystaerogelGOMXene/g-C3N4
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
近年來氣候變遷乃國際間共同關注的議題,而二氧化碳是導致全球氣候加
速暖化的主要溫室氣體,因此減緩「二氧化碳排放」為解決極端氣候問題之核
心。 而用 空氣產生電能的燃料電池則是未來替代能源的一顆新星。金屬空氣燃
料電池顧名思義就是直接把空氣轉換成電能的電池,發電過程中不會產生二氧
化碳,是種極為環保的綠色能源。
在本研究中,成功利用水熱法合成,在高溫高壓下的條件,製備出 GO/C3N4、
GOMXene、 GOMXene/C3N4這三種系列的自主裝氣凝膠。在表面型態、比表
面積分析以及缺陷分析, GOMXene/C3N4有最好 的結果,孔洞的生成多、缺陷
較多 而且又有利於電子傳輸的材料,擁有良好的電催化效果 。
在 ORR/OER檢測中,因為 GOMXene/C3N4氣凝膠融合了 g-C3N4以及 p-MXene的優點,即為支撐物避免堆疊有利孔洞生成,以及有利電子傳遞,將其
電催化效果最 佳 化。而在電子轉移數的測試中,能夠證明本研究所研發之
GOMXene/C3N4氣凝膠是 直接 四電子通路 ,也間接證明 GOMXene/C3N4氣凝
膠 不會產生會腐蝕的物質而去破壞電池。在電化學活性表面積測試中,
GOMXene/C3N4氣凝膠在每平方公分的面積下,有 5.6毫 法拉第電容量,又再
證明出 GOMXene/C3N4擁有良好的電催化性。在充放電測試中,
GOMXene/C3N4和目前發展已趨於穩定的商業 Pt/C之 overpotential相當接近,
而在長時間的充放電測試中, 與 商業 Pt/C相比穩定性較差 ,但是
GOMXene/C3N4的增長率只有大約 18%,還是具有 開發 潛力。
In this study, we successfully used hydrothermal synthesis to prepare GO/C3N4, GOMXene, GOMXene/C3N4 under the conditions of high temperature and high pressure. This is a series of automatic aerogels. According to the analysis, GOMXene/C3N4 has the best results. There are many holes and defects, and it is a material that is conducive to electron transport and has a good electrocatalytic effect.
In the ORR/OER test, because the GOMXene/C3N4 aerogel combines the advantages of g-C3N4 and p-MXene, that is, the support avoids the formation of favorable holes and the favorable electron transfer, which maximizes its electrocatalytic effect . In the test of the electron transfer number, it can prove that the GOMXene/C3N4 aerogel developed by this research is a four-electron pathway, and it also indirectly proves that the GOMXene/C3N4 aerogel does not produce corrosive substances to damage the battery. In the electrochemical active surface area test, GOMXene/C3N4 aerogel has a 5.6 mF/cm2, which again proves that GOMXene/C3N4 has good electrocatalytic properties. In the charge-discharge test, the ΔE of GOMXene/C3N4 is closed to commercial Pt/C. In the continuous charge-discharge test,The ΔE is quite close, while the stability is not as good as the commercial Pt/C. However, the growth rate of GOMXene/C3N4 is only about 18%, and it still has potential development.
摘要.............................................................................................................................. IV
Abstract ......................................................................................................................... V
總目錄.......................................................................................................................... VI
圖目錄....................................................................................................................... VIII
表目錄........................................................................................................................... X
第一章 序論.................................................................................................................. 1
1.1 前言 ................................................................................................................................ 1
1.2 鋅-空氣電池(zinc-air batteries, ZABs)發展近況 .......................................................... 1
1.3 研究動機 ........................................................................................................................ 2
第二章 文獻回顧.......................................................................................................... 3
2.1 鋅-空氣電池介紹 ........................................................................................................... 3
2.1.1 全反應機制 ............................................................................................................. 3
2.1.2 陰極觸媒反應 ......................................................................................................... 4
2.1.3 元件內部介紹 ......................................................................................................... 7
2.2 現今空氣電極觸媒材料發展 ........................................................................................ 9
2.3 空氣電極觸媒材料介紹 .............................................................................................. 10
2.3.1 氧化石墨烯氣凝膠 (graphene oxide aerogel) ..................................................... 10
2.3.2 類石墨氮化碳(graphite-like carbon nitride, g-C3N4) ........................................... 12
2.3.3 Pristine Ti3C2Tx (p-MXene) ................................................................................... 14
第三章 實驗藥品與方法............................................................................................ 16
3.1 實驗藥品 ...................................................................................................................... 16
3.2 實驗器材 ...................................................................................................................... 16
3.3 實驗步驟 ...................................................................................................................... 18
3.3.1 空氣電極材料合成 ............................................................................................... 18
3.3.2 電化學觸媒漿料配製 ........................................................................................... 22
3.3.3 全電池元件組裝 ................................................................................................... 23
VII
第四章 結果與討論.................................................................................................... 25
4.1 GO aerogel、GO/C3N4、GOMXene以及GOMXene/C3N4型態分析 ...................... 25
4.1.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) ............................... 25
4.1.2 穿透式電子顯微鏡 (Transmission electron microscope, TEM) ......................... 27
4.1.3 g-C3N4光學性質分析 ............................................................................................ 28
4.2 ORR/OER效能分析 ..................................................................................................... 30
4.2.1 ORR效能檢測 ....................................................................................................... 30
4.2.2 OER效能檢測 ....................................................................................................... 38
4.3 最適化條件之孔洞和缺陷分析 .................................................................................. 42
4.3.1 比表面積分析儀 (BET surface area analysis) ..................................................... 42
4.3.2 拉曼光譜儀 (Raman spectroscopy) ..................................................................... 45
4.4 電子轉移數(The electron transfer number) ................................................................. 46
4.5電化學活性表面積(electrochemical active surface area)............................................. 48
4.6最適化條件之充放電測試 ........................................................................................... 49
第五章 結論與未來展望............................................................................................ 52
第六章 參考文獻........................................................................................................ 53
[1.] Lu, L. ;X. Han ;J. Li ;J. Hua ;M. Ouyang. A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013, 226, 272.
[2.] Lach, J. ;K. Wróbel ;J. Wróbel ;P. Podsadni ;A. Czerwiński. Applications of carbon in lead-acid batteries: a review. Journal of Solid State Electrochemistry, 2019, 23, 693.
[3.] Gentil, S. ;D. Reynard ;H.H. Girault. Aqueous organic and redox-mediated redox flow batteries: a review. Current Opinion in Electrochemistry, 2020, 21, 7.
[4.] Lee, J.-S. ;S. Tai Kim ;R. Cao ;N.-S. Choi ;M. Liu ;K.T. Lee ;J. Cho. Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, 2011, 1, 34.
[5.] Chen, G. ;Q. Huang ;T. Wu ;L. Lu. Polyanion Sodium Vanadium Phosphate for Next Generation of Sodium‐Ion Batteries—A Review. Advanced Functional Materials, 2020, 30, 2001289.
[6.] Iranzo, A. ;C.H. Arredondo ;A.M. Kannan ;F. Rosa. Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends. Energy, 2020, 190, 116435.
[7.] Liu, H. ;X. Liu ;S. Wang ;H.-K. Liu ;L. Li. Transition metal based battery-type electrodes in hybrid supercapacitors: A review. Energy Storage Materials, 2020, 28, 122.
[8.] Xu, C. ;H. Yang ;Y. Li ;J. Wang ;X. Lu. Surface Engineering for Advanced Aqueous Supercapacitors: A Review. ChemElectroChem, 2019, 7, 586.
[9.] Han, C. ;W. Li ;H.-K. Liu ;S. Dou ;J. Wang. Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6, 1812.
[10.] Pan, J. ;Y.Y. Xu ;H. Yang ;Z. Dong ;H. Liu ;B.Y. Xia. Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries. Adv Sci (Weinh), 2018, 5, 1700691.
[11.] Wang, H.-F. ;C. Tang ;Q. Zhang. A Review of Precious-Metal-Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Zn−Air Batteries. Advanced Functional Materials, 2018, 28, 1803329.
[12.] Cai, X. ;L. Lai ;J. Lin ;Z. Shen. Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design. Materials Horizons, 2017, 4, 945.
[13.] Lee, Y. ;J. Suntivich ;K.J. May ;E.E. Perry ;Y. Shao-Horn. Synthesis and
54
Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. J Phys Chem Lett, 2012, 3, 399.
[14.] Paulus, U. A.; Schmidt, T. J.; Gasteiger, H. A.; Behm, R. J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. Journal of Electroanalytical Chemistry, 2001, 495, 134.
[15.] Ren, S. ;X. Duan ;S. Liang ;M. Zhang ;H. Zheng. Bifunctional electrocatalysts for Zn–air batteries: recent developments and future perspectives. Journal of Materials Chemistry A, 2020, 8, 6144.
[16.] Wei, C. ;Z.J. Xu. The Comprehensive Understanding of 10 mA cmgeo−2 as an Evaluation Parameter for Electrochemical Water Splitting. Small Methods, 2018, 2, 1800168.
[17.] Yi, J. ;P. Liang ;X. Liu ;K. Wu ;Y. Liu ;Y. Wang ;Y. Xia ;J. Zhang. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy & Environmental Science, 2018, 11, 3075.
[18.] Fu, G. ;Y. Tang ;J.-M. Lee. Recent Advances in Carbon-Based Bifunctional Oxygen Electrocatalysts for Zn−Air Batteries. ChemElectroChem, 2018, 5, 1424.
[19.] Yu, Q. ;Y. Luo ;A. Mahmood ;B. Liu ;H.-M. Cheng. Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance Electrocatalysts. Electrochemical Energy Reviews, 2019, 2, 373.
[20.] Kausar, A. ;R. Taherian. Electrical Conductivity Behavior of Polymer Nanocomposite with Carbon Nanofillers. Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications. 2019, 41.
[21.] Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A., Sun; Z., Slesarev, A.; Tour, J. M.. Improved synthesis of graphene oxide. ACS nano, 2010, 4, 4806.
[22.] Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS nano, 2010, 4, 4324.
[23.] Wan, W. ;S. Yu ;F. Dong ;Q. Zhang ;Y. Zhou. Efficient C3N4/graphene oxide macroscopic aerogel visible-light photocatalyst. Journal of Materials Chemistry A, 2016, 4, 7823.
[24.] Gong, Y. ;C. Fu ;G. Zhang ;H. Zhou ;Y. Kuang. Three-dimensional Porous C3N4 Nanosheets@Reduced Graphene Oxide Network as Sulfur Hosts for High Performance Lithium-Sulfur Batteries. Electrochimica Acta, 2017, 256, 1.
[25.] Wang, Q. ;Y. Ji ;Y. Lei ;Y. Wang ;Y. Wang ;Y. Li ;S. Wang. Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst
55
for Ultrahigh-Energy-Density Zn–Air Batteries. ACS Energy Letters, 2018, 3, 1183.
[26.] Zhao, S. ;H.B. Zhang ;J.Q. Luo ;Q.W. Wang ;B. Xu ;S. Hong ;Z.Z. Yu. Highly Electrically Conductive Three-Dimensional Ti3C2T x MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano, 2018, 12, 11193.
[27.] Wen, J. ;J. Xie ;X. Chen ;X. Li. A review on g-C 3 N 4 -based photocatalysts. Applied Surface Science, 2017, 391, 72.
[28.] Zhang, G. ;J. Zhang ;M. Zhang ;X. Wang. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. Journal of Materials Chemistry, 2012, 22, 8083.
[29.] Mishra, A. ;A. Mehta ;S. Basu ;N.P. Shetti ;K.R. Reddy ;T.M. Aminabhavi. Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review. Carbon, 2019, 149, 693.
[30.] Yu, X. ;W. Yin ;T. Wang ;Y. Zhang. Decorating g-C3N4 Nanosheets with Ti3C2 MXene Nanoparticles for Efficient Oxygen Reduction Reaction. Langmuir, 2019, 35, 2909.
[31.] Yang, J. ;W. Bao ;P. Jaumaux ;S. Zhang ;C. Wang ;G. Wang. MXene‐Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1802004.
[32.] Liu, Y. ;J. Yu ;D. Guo ;Z. Li ;Y. Su. Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. Journal of Alloys and Compounds, 2020, 815, 152403.
[33.] Wang, H. ;Y. Wu ;J. Zhang ;G. Li ;H. Huang ;X. Zhang ;Q. Jiang. Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Materials Letters, 2015, 160, 537.
[34.] Wu, C.-W. ;B. Unnikrishnan ;I.W.P. Chen ;S.G. Harroun ;H.-T. Chang ;C.-C. Huang. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Materials, 2020, 25, 563.
[35.] Xiong, D. ;X. Li ;Z. Bai ;S. Lu. Recent Advances in Layered Ti3 C2 Tx MXene for Electrochemical Energy Storage. Small, 2018, 14, 1703419.
[36.] Song, J. ;X. Guo ;J. Zhang ;Y. Chen ;C. Zhang ;L. Luo ;F. Wang ;G. Wang. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 6507.
[37.] Bao, W. ;X. Xie ;J. Xu ;X. Guo ;J. Song ;W. Wu ;D. Su ;G. Wang. Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for
56
Lithium-Sulfur Battery. Chemistry, 2017, 23, 12613.
[38.] Wan, J. ;C. Pu ;R. Wang ;E. Liu ;X. Du ;X. Bai ;J. Fan ;X. Hu. A facile dissolution strategy facilitated by H2SO4 to fabricate a 2D metal-free g-C3N4/rGO heterojunction for efficient photocatalytic H2 production. International Journal of Hydrogen Energy, 2018, 43, 7007.
[39.] Tang, L. ;C.-t. Jia ;Y.-c. Xue ;L. Li ;A.-q. Wang ;G. Xu ;N. Liu ;M.-h. Wu. Fabrication of compressible and recyclable macroscopic g-C3N4/GO aerogel hybrids for visible-light harvesting: A promising strategy for water remediation. Applied Catalysis B: Environmental, 2017, 219, 241.
[40.] Babar, S. ;N. Gavade ;H. Shinde ;P. Mahajan ;K.H. Lee ;N. Mane ;A. Deshmukh ;K. Garadkar ;V. Bhuse. Evolution of Waste Iron Rust into Magnetically Separable g-C3N4–Fe2O3 Photocatalyst: An Efficient and Economical Waste Management Approach. ACS Applied Nano Materials, 2018, 1, 4682.
[41.] Zhong, H.; Lo, S. S.; Mirkovic, T.; Li, Y.; Ding, Y.; Li, Y.; Scholes, G. D.. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS nano, 2010, 4, 5253.
[42.] Shinde, S.S. ;C.H. Lee ;J.Y. Yu ;D.H. Kim ;S.U. Lee ;J.H. Lee. Hierarchically Designed 3D Holey C2N Aerogels as Bifunctional Oxygen Electrodes for Flexible and Rechargeable Zn-Air Batteries. ACS Nano, 2018, 12, 596.
[43.] Hu, S. ;T. Han ;C. Lin ;W. Xiang ;Y. Zhao ;P. Gao ;F. Du ;X. Li ;Y. Sun. Enhanced Electrocatalysis via 3D Graphene Aerogel Engineered with a Silver Nanowire Network for Ultrahigh-Rate Zinc-Air Batteries. Advanced Functional Materials, 2017, 27, 1700041.
[44.] Zeng, Z. ;G. Fu ;H.B. Yang ;Y. Yan ;J. Chen ;Z. Yu ;J. Gao ;L.Y. Gan ;B. Liu ;P. Chen. Bifunctional N-CoSe2/3D-MXene as Highly Efficient and Durable Cathode for Rechargeable Zn–Air Battery. ACS Materials Letters, 2019, 1, 432.
[45.] Wang, X. ;L. Ge ;Q. Lu ;J. Dai ;D. Guan ;R. Ran ;S.-C. Weng ;Z. Hu ;W. Zhou ;Z. Shao. High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-Air battery. Journal of Power Sources, 2020, 468, 228377.
[46.] https://www.iitk.ac.in/che/pdf/resources/BET-TPX-Chemi-reading-material.pdf. accessed November 2013.
[47.] Hu, J. ;Z. Shi ;X. Wang ;H. Qiao ;H. Huang. Silver-modified porous 3D nitrogen-doped graphene aerogel: Highly efficient oxygen reduction electrocatalyst for Zn−Air battery. Electrochimica Acta, 2019, 302, 216.
[48.] Zhan, W. ;L. Gao ;X. Fu ;S.H. Siyal ;G. Sui ;X. Yang. Green synthesis of
57
amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal. Applied Surface Science, 2019, 467-468, 1122.
[49.] Chen, M. ;C. Zhang ;X. Li ;L. Zhang ;Y. Ma ;L. Zhang ;X. Xu ;F. Xia ;W. Wang ;J. Gao. A one-step method for reduction and self-assembling of graphene oxide into reduced graphene oxide aerogels. Journal of Materials Chemistry A, 2013, 1, 2869.
[50.] Hu, Y. ;H. Zhuo ;Q. Luo ;Y. Wu ;R. Wen ;Z. Chen ;L. Liu ;L. Zhong ;X. Peng ;R. Sun. Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. Journal of Materials Chemistry A, 2019, 7, 10273.
[51.] Shao, L. ;J. Xu ;J. Ma ;B. Zhai ;Y. Li ;R. Xu ;Z. Ma ;G. Zhang ;C. Wang ;J. Qiu. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials. Composites Communications, 2020, 19, 108.
[52.] Zhang, X. ;X. Han ;Z. Jiang ;J. Xu ;L. Chen ;Y. Xue ;A. Nie ;Z. Xie ;Q. Kuang ;L. Zheng. Atomically dispersed hierarchically ordered porous Fe–N–C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery. Nano Energy, 2020, 71, 104547.
[53.] Łukaszewski, M. Electrochemical Methods of Real Surface Area Determination of Noble Metal Electrodes – an Overview. International Journal of Electrochemical Science, 2016, 11, 4442.
[54.] Shao, M. ;J.H. Odell ;S.-I. Choi ;Y. Xia. Electrochemical surface area measurements of platinum- and palladium-based nanoparticles. Electrochemistry Communications, 2013, 31, 46.
[55.] Allen J. Bard; Larry R. Faulkner. Electrochemical methods.2001, 2ed.
[56.] Wei, L. ;H.E. Karahan ;S. Zhai ;H. Liu ;X. Chen ;Z. Zhou ;Y. Lei ;Z. Liu ;Y. Chen. Amorphous Bimetallic Oxide-Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Adv Mater, 2017, 29, 1701410.
[57.] Jiang, H. ;Y. Liu ;W. Li ;J. Li. Co Nanoparticles Confined in 3D Nitrogen-Doped Porous Carbon Foams as Bifunctional Electrocatalysts for Long-Life Rechargeable Zn-Air Batteries. Small, 2018, 14, 1703739.
[58.] Li, L. ;J. Qin ;H. Bi ;S. Gai ;F. He ;P. Gao ;Y. Dai ;X. Zhang ;D. Yang ;P. Yang. Ni(OH)2 nanosheets grown on porous hybrid g-C3N4/RGO network as high performance supercapacitor electrode. Sci Rep, 2017, 7, 43413.
全文檔公開日期:2025/08/18 (本校及校內區域網路)
全文檔公開日期:2025/08/18 (校外網際網路)
全文檔公開日期:2025/08/18 (國家圖書館:臺灣博碩士論文系統)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *