簡易檢索 / 詳目顯示

研究生: 黃名琇
Ming-Hsiu Huang
論文名稱: 混摻性二維材料之合成及應用於鋅空氣燃料電池
Synthesis of hybrid 2D material and its application in Zn-air battery
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 何郡軒
Jinn-Hsuan Ho
江佳穎
Chia-Ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 68
中文關鍵詞: 鋅空氣電池空氣陰極觸媒氣凝膠GOMXene/g-C3N4
外文關鍵詞: Zn-air battery, air cathode catalyst, aerogel, GOMXene/g-C3N4
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來氣候變遷乃國際間共同關注的議題,而二氧化碳是導致全球氣候加
    速暖化的主要溫室氣體,因此減緩「二氧化碳排放」為解決極端氣候問題之核
    心。 而用 空氣產生電能的燃料電池則是未來替代能源的一顆新星。金屬空氣燃
    料電池顧名思義就是直接把空氣轉換成電能的電池,發電過程中不會產生二氧
    化碳,是種極為環保的綠色能源。
    在本研究中,成功利用水熱法合成,在高溫高壓下的條件,製備出 GO/C3N4、
    GOMXene、 GOMXene/C3N4這三種系列的自主裝氣凝膠。在表面型態、比表
    面積分析以及缺陷分析, GOMXene/C3N4有最好 的結果,孔洞的生成多、缺陷
    較多 而且又有利於電子傳輸的材料,擁有良好的電催化效果 。
    在 ORR/OER檢測中,因為 GOMXene/C3N4氣凝膠融合了 g-C3N4以及 p-MXene的優點,即為支撐物避免堆疊有利孔洞生成,以及有利電子傳遞,將其
    電催化效果最 佳 化。而在電子轉移數的測試中,能夠證明本研究所研發之
    GOMXene/C3N4氣凝膠是 直接 四電子通路 ,也間接證明 GOMXene/C3N4氣凝
    膠 不會產生會腐蝕的物質而去破壞電池。在電化學活性表面積測試中,
    GOMXene/C3N4氣凝膠在每平方公分的面積下,有 5.6毫 法拉第電容量,又再
    證明出 GOMXene/C3N4擁有良好的電催化性。在充放電測試中,
    GOMXene/C3N4和目前發展已趨於穩定的商業 Pt/C之 overpotential相當接近,
    而在長時間的充放電測試中, 與 商業 Pt/C相比穩定性較差 ,但是
    GOMXene/C3N4的增長率只有大約 18%,還是具有 開發 潛力。


    In this study, we successfully used hydrothermal synthesis to prepare GO/C3N4, GOMXene, GOMXene/C3N4 under the conditions of high temperature and high pressure. This is a series of automatic aerogels. According to the analysis, GOMXene/C3N4 has the best results. There are many holes and defects, and it is a material that is conducive to electron transport and has a good electrocatalytic effect.
    In the ORR/OER test, because the GOMXene/C3N4 aerogel combines the advantages of g-C3N4 and p-MXene, that is, the support avoids the formation of favorable holes and the favorable electron transfer, which maximizes its electrocatalytic effect . In the test of the electron transfer number, it can prove that the GOMXene/C3N4 aerogel developed by this research is a four-electron pathway, and it also indirectly proves that the GOMXene/C3N4 aerogel does not produce corrosive substances to damage the battery. In the electrochemical active surface area test, GOMXene/C3N4 aerogel has a 5.6 mF/cm2, which again proves that GOMXene/C3N4 has good electrocatalytic properties. In the charge-discharge test, the ΔE of GOMXene/C3N4 is closed to commercial Pt/C. In the continuous charge-discharge test,The ΔE is quite close, while the stability is not as good as the commercial Pt/C. However, the growth rate of GOMXene/C3N4 is only about 18%, and it still has potential development.

    摘要.............................................................................................................................. IV Abstract ......................................................................................................................... V 總目錄.......................................................................................................................... VI 圖目錄....................................................................................................................... VIII 表目錄........................................................................................................................... X 第一章 序論.................................................................................................................. 1 1.1 前言 ................................................................................................................................ 1 1.2 鋅-空氣電池(zinc-air batteries, ZABs)發展近況 .......................................................... 1 1.3 研究動機 ........................................................................................................................ 2 第二章 文獻回顧.......................................................................................................... 3 2.1 鋅-空氣電池介紹 ........................................................................................................... 3 2.1.1 全反應機制 ............................................................................................................. 3 2.1.2 陰極觸媒反應 ......................................................................................................... 4 2.1.3 元件內部介紹 ......................................................................................................... 7 2.2 現今空氣電極觸媒材料發展 ........................................................................................ 9 2.3 空氣電極觸媒材料介紹 .............................................................................................. 10 2.3.1 氧化石墨烯氣凝膠 (graphene oxide aerogel) ..................................................... 10 2.3.2 類石墨氮化碳(graphite-like carbon nitride, g-C3N4) ........................................... 12 2.3.3 Pristine Ti3C2Tx (p-MXene) ................................................................................... 14 第三章 實驗藥品與方法............................................................................................ 16 3.1 實驗藥品 ...................................................................................................................... 16 3.2 實驗器材 ...................................................................................................................... 16 3.3 實驗步驟 ...................................................................................................................... 18 3.3.1 空氣電極材料合成 ............................................................................................... 18 3.3.2 電化學觸媒漿料配製 ........................................................................................... 22 3.3.3 全電池元件組裝 ................................................................................................... 23 VII 第四章 結果與討論.................................................................................................... 25 4.1 GO aerogel、GO/C3N4、GOMXene以及GOMXene/C3N4型態分析 ...................... 25 4.1.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) ............................... 25 4.1.2 穿透式電子顯微鏡 (Transmission electron microscope, TEM) ......................... 27 4.1.3 g-C3N4光學性質分析 ............................................................................................ 28 4.2 ORR/OER效能分析 ..................................................................................................... 30 4.2.1 ORR效能檢測 ....................................................................................................... 30 4.2.2 OER效能檢測 ....................................................................................................... 38 4.3 最適化條件之孔洞和缺陷分析 .................................................................................. 42 4.3.1 比表面積分析儀 (BET surface area analysis) ..................................................... 42 4.3.2 拉曼光譜儀 (Raman spectroscopy) ..................................................................... 45 4.4 電子轉移數(The electron transfer number) ................................................................. 46 4.5電化學活性表面積(electrochemical active surface area)............................................. 48 4.6最適化條件之充放電測試 ........................................................................................... 49 第五章 結論與未來展望............................................................................................ 52 第六章 參考文獻........................................................................................................ 53

    [1.] Lu, L. ;X. Han ;J. Li ;J. Hua ;M. Ouyang. A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013, 226, 272.
    [2.] Lach, J. ;K. Wróbel ;J. Wróbel ;P. Podsadni ;A. Czerwiński. Applications of carbon in lead-acid batteries: a review. Journal of Solid State Electrochemistry, 2019, 23, 693.
    [3.] Gentil, S. ;D. Reynard ;H.H. Girault. Aqueous organic and redox-mediated redox flow batteries: a review. Current Opinion in Electrochemistry, 2020, 21, 7.
    [4.] Lee, J.-S. ;S. Tai Kim ;R. Cao ;N.-S. Choi ;M. Liu ;K.T. Lee ;J. Cho. Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, 2011, 1, 34.
    [5.] Chen, G. ;Q. Huang ;T. Wu ;L. Lu. Polyanion Sodium Vanadium Phosphate for Next Generation of Sodium‐Ion Batteries—A Review. Advanced Functional Materials, 2020, 30, 2001289.
    [6.] Iranzo, A. ;C.H. Arredondo ;A.M. Kannan ;F. Rosa. Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends. Energy, 2020, 190, 116435.
    [7.] Liu, H. ;X. Liu ;S. Wang ;H.-K. Liu ;L. Li. Transition metal based battery-type electrodes in hybrid supercapacitors: A review. Energy Storage Materials, 2020, 28, 122.
    [8.] Xu, C. ;H. Yang ;Y. Li ;J. Wang ;X. Lu. Surface Engineering for Advanced Aqueous Supercapacitors: A Review. ChemElectroChem, 2019, 7, 586.
    [9.] Han, C. ;W. Li ;H.-K. Liu ;S. Dou ;J. Wang. Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6, 1812.
    [10.] Pan, J. ;Y.Y. Xu ;H. Yang ;Z. Dong ;H. Liu ;B.Y. Xia. Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries. Adv Sci (Weinh), 2018, 5, 1700691.
    [11.] Wang, H.-F. ;C. Tang ;Q. Zhang. A Review of Precious-Metal-Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Zn−Air Batteries. Advanced Functional Materials, 2018, 28, 1803329.
    [12.] Cai, X. ;L. Lai ;J. Lin ;Z. Shen. Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design. Materials Horizons, 2017, 4, 945.
    [13.] Lee, Y. ;J. Suntivich ;K.J. May ;E.E. Perry ;Y. Shao-Horn. Synthesis and
    54
    Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. J Phys Chem Lett, 2012, 3, 399.
    [14.] Paulus, U. A.; Schmidt, T. J.; Gasteiger, H. A.; Behm, R. J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. Journal of Electroanalytical Chemistry, 2001, 495, 134.
    [15.] Ren, S. ;X. Duan ;S. Liang ;M. Zhang ;H. Zheng. Bifunctional electrocatalysts for Zn–air batteries: recent developments and future perspectives. Journal of Materials Chemistry A, 2020, 8, 6144.
    [16.] Wei, C. ;Z.J. Xu. The Comprehensive Understanding of 10 mA cmgeo−2 as an Evaluation Parameter for Electrochemical Water Splitting. Small Methods, 2018, 2, 1800168.
    [17.] Yi, J. ;P. Liang ;X. Liu ;K. Wu ;Y. Liu ;Y. Wang ;Y. Xia ;J. Zhang. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy & Environmental Science, 2018, 11, 3075.
    [18.] Fu, G. ;Y. Tang ;J.-M. Lee. Recent Advances in Carbon-Based Bifunctional Oxygen Electrocatalysts for Zn−Air Batteries. ChemElectroChem, 2018, 5, 1424.
    [19.] Yu, Q. ;Y. Luo ;A. Mahmood ;B. Liu ;H.-M. Cheng. Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance Electrocatalysts. Electrochemical Energy Reviews, 2019, 2, 373.
    [20.] Kausar, A. ;R. Taherian. Electrical Conductivity Behavior of Polymer Nanocomposite with Carbon Nanofillers. Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications. 2019, 41.
    [21.] Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A., Sun; Z., Slesarev, A.; Tour, J. M.. Improved synthesis of graphene oxide. ACS nano, 2010, 4, 4806.
    [22.] Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS nano, 2010, 4, 4324.
    [23.] Wan, W. ;S. Yu ;F. Dong ;Q. Zhang ;Y. Zhou. Efficient C3N4/graphene oxide macroscopic aerogel visible-light photocatalyst. Journal of Materials Chemistry A, 2016, 4, 7823.
    [24.] Gong, Y. ;C. Fu ;G. Zhang ;H. Zhou ;Y. Kuang. Three-dimensional Porous C3N4 Nanosheets@Reduced Graphene Oxide Network as Sulfur Hosts for High Performance Lithium-Sulfur Batteries. Electrochimica Acta, 2017, 256, 1.
    [25.] Wang, Q. ;Y. Ji ;Y. Lei ;Y. Wang ;Y. Wang ;Y. Li ;S. Wang. Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst
    55
    for Ultrahigh-Energy-Density Zn–Air Batteries. ACS Energy Letters, 2018, 3, 1183.
    [26.] Zhao, S. ;H.B. Zhang ;J.Q. Luo ;Q.W. Wang ;B. Xu ;S. Hong ;Z.Z. Yu. Highly Electrically Conductive Three-Dimensional Ti3C2T x MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano, 2018, 12, 11193.
    [27.] Wen, J. ;J. Xie ;X. Chen ;X. Li. A review on g-C 3 N 4 -based photocatalysts. Applied Surface Science, 2017, 391, 72.
    [28.] Zhang, G. ;J. Zhang ;M. Zhang ;X. Wang. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. Journal of Materials Chemistry, 2012, 22, 8083.
    [29.] Mishra, A. ;A. Mehta ;S. Basu ;N.P. Shetti ;K.R. Reddy ;T.M. Aminabhavi. Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review. Carbon, 2019, 149, 693.
    [30.] Yu, X. ;W. Yin ;T. Wang ;Y. Zhang. Decorating g-C3N4 Nanosheets with Ti3C2 MXene Nanoparticles for Efficient Oxygen Reduction Reaction. Langmuir, 2019, 35, 2909.
    [31.] Yang, J. ;W. Bao ;P. Jaumaux ;S. Zhang ;C. Wang ;G. Wang. MXene‐Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1802004.
    [32.] Liu, Y. ;J. Yu ;D. Guo ;Z. Li ;Y. Su. Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. Journal of Alloys and Compounds, 2020, 815, 152403.
    [33.] Wang, H. ;Y. Wu ;J. Zhang ;G. Li ;H. Huang ;X. Zhang ;Q. Jiang. Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Materials Letters, 2015, 160, 537.
    [34.] Wu, C.-W. ;B. Unnikrishnan ;I.W.P. Chen ;S.G. Harroun ;H.-T. Chang ;C.-C. Huang. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Materials, 2020, 25, 563.
    [35.] Xiong, D. ;X. Li ;Z. Bai ;S. Lu. Recent Advances in Layered Ti3 C2 Tx MXene for Electrochemical Energy Storage. Small, 2018, 14, 1703419.
    [36.] Song, J. ;X. Guo ;J. Zhang ;Y. Chen ;C. Zhang ;L. Luo ;F. Wang ;G. Wang. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 6507.
    [37.] Bao, W. ;X. Xie ;J. Xu ;X. Guo ;J. Song ;W. Wu ;D. Su ;G. Wang. Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for
    56
    Lithium-Sulfur Battery. Chemistry, 2017, 23, 12613.
    [38.] Wan, J. ;C. Pu ;R. Wang ;E. Liu ;X. Du ;X. Bai ;J. Fan ;X. Hu. A facile dissolution strategy facilitated by H2SO4 to fabricate a 2D metal-free g-C3N4/rGO heterojunction for efficient photocatalytic H2 production. International Journal of Hydrogen Energy, 2018, 43, 7007.
    [39.] Tang, L. ;C.-t. Jia ;Y.-c. Xue ;L. Li ;A.-q. Wang ;G. Xu ;N. Liu ;M.-h. Wu. Fabrication of compressible and recyclable macroscopic g-C3N4/GO aerogel hybrids for visible-light harvesting: A promising strategy for water remediation. Applied Catalysis B: Environmental, 2017, 219, 241.
    [40.] Babar, S. ;N. Gavade ;H. Shinde ;P. Mahajan ;K.H. Lee ;N. Mane ;A. Deshmukh ;K. Garadkar ;V. Bhuse. Evolution of Waste Iron Rust into Magnetically Separable g-C3N4–Fe2O3 Photocatalyst: An Efficient and Economical Waste Management Approach. ACS Applied Nano Materials, 2018, 1, 4682.
    [41.] Zhong, H.; Lo, S. S.; Mirkovic, T.; Li, Y.; Ding, Y.; Li, Y.; Scholes, G. D.. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS nano, 2010, 4, 5253.
    [42.] Shinde, S.S. ;C.H. Lee ;J.Y. Yu ;D.H. Kim ;S.U. Lee ;J.H. Lee. Hierarchically Designed 3D Holey C2N Aerogels as Bifunctional Oxygen Electrodes for Flexible and Rechargeable Zn-Air Batteries. ACS Nano, 2018, 12, 596.
    [43.] Hu, S. ;T. Han ;C. Lin ;W. Xiang ;Y. Zhao ;P. Gao ;F. Du ;X. Li ;Y. Sun. Enhanced Electrocatalysis via 3D Graphene Aerogel Engineered with a Silver Nanowire Network for Ultrahigh-Rate Zinc-Air Batteries. Advanced Functional Materials, 2017, 27, 1700041.
    [44.] Zeng, Z. ;G. Fu ;H.B. Yang ;Y. Yan ;J. Chen ;Z. Yu ;J. Gao ;L.Y. Gan ;B. Liu ;P. Chen. Bifunctional N-CoSe2/3D-MXene as Highly Efficient and Durable Cathode for Rechargeable Zn–Air Battery. ACS Materials Letters, 2019, 1, 432.
    [45.] Wang, X. ;L. Ge ;Q. Lu ;J. Dai ;D. Guan ;R. Ran ;S.-C. Weng ;Z. Hu ;W. Zhou ;Z. Shao. High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-Air battery. Journal of Power Sources, 2020, 468, 228377.
    [46.] https://www.iitk.ac.in/che/pdf/resources/BET-TPX-Chemi-reading-material.pdf. accessed November 2013.
    [47.] Hu, J. ;Z. Shi ;X. Wang ;H. Qiao ;H. Huang. Silver-modified porous 3D nitrogen-doped graphene aerogel: Highly efficient oxygen reduction electrocatalyst for Zn−Air battery. Electrochimica Acta, 2019, 302, 216.
    [48.] Zhan, W. ;L. Gao ;X. Fu ;S.H. Siyal ;G. Sui ;X. Yang. Green synthesis of
    57
    amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal. Applied Surface Science, 2019, 467-468, 1122.
    [49.] Chen, M. ;C. Zhang ;X. Li ;L. Zhang ;Y. Ma ;L. Zhang ;X. Xu ;F. Xia ;W. Wang ;J. Gao. A one-step method for reduction and self-assembling of graphene oxide into reduced graphene oxide aerogels. Journal of Materials Chemistry A, 2013, 1, 2869.
    [50.] Hu, Y. ;H. Zhuo ;Q. Luo ;Y. Wu ;R. Wen ;Z. Chen ;L. Liu ;L. Zhong ;X. Peng ;R. Sun. Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. Journal of Materials Chemistry A, 2019, 7, 10273.
    [51.] Shao, L. ;J. Xu ;J. Ma ;B. Zhai ;Y. Li ;R. Xu ;Z. Ma ;G. Zhang ;C. Wang ;J. Qiu. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials. Composites Communications, 2020, 19, 108.
    [52.] Zhang, X. ;X. Han ;Z. Jiang ;J. Xu ;L. Chen ;Y. Xue ;A. Nie ;Z. Xie ;Q. Kuang ;L. Zheng. Atomically dispersed hierarchically ordered porous Fe–N–C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery. Nano Energy, 2020, 71, 104547.
    [53.] Łukaszewski, M. Electrochemical Methods of Real Surface Area Determination of Noble Metal Electrodes – an Overview. International Journal of Electrochemical Science, 2016, 11, 4442.
    [54.] Shao, M. ;J.H. Odell ;S.-I. Choi ;Y. Xia. Electrochemical surface area measurements of platinum- and palladium-based nanoparticles. Electrochemistry Communications, 2013, 31, 46.
    [55.] Allen J. Bard; Larry R. Faulkner. Electrochemical methods.2001, 2ed.
    [56.] Wei, L. ;H.E. Karahan ;S. Zhai ;H. Liu ;X. Chen ;Z. Zhou ;Y. Lei ;Z. Liu ;Y. Chen. Amorphous Bimetallic Oxide-Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Adv Mater, 2017, 29, 1701410.
    [57.] Jiang, H. ;Y. Liu ;W. Li ;J. Li. Co Nanoparticles Confined in 3D Nitrogen-Doped Porous Carbon Foams as Bifunctional Electrocatalysts for Long-Life Rechargeable Zn-Air Batteries. Small, 2018, 14, 1703739.
    [58.] Li, L. ;J. Qin ;H. Bi ;S. Gai ;F. He ;P. Gao ;Y. Dai ;X. Zhang ;D. Yang ;P. Yang. Ni(OH)2 nanosheets grown on porous hybrid g-C3N4/RGO network as high performance supercapacitor electrode. Sci Rep, 2017, 7, 43413.

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 2025/08/18 (校外網路)
    全文公開日期 2025/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE