簡易檢索 / 詳目顯示

研究生: 蕭以安
Yi-An Xiao
論文名稱: 氮摻雜石墨烯氣凝膠/碳纖維複合材料應用於電容去離子淨水技術之研究
Electrochemical and capacitive deionization performance of carbon fiber reinforced nitrogen doped graphene aerogel composite electrodes
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 鄭國彬
Guo-Bin Cheng
張志宇
Chih-Yu Chang
張棋榕
Chi-Jung Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 82
中文關鍵詞: 石墨烯氣凝膠電容去離子技術氮原子摻雜
外文關鍵詞: graphene, aerogel, capacitive deionization, N-dope
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究氮摻雜(N-dope)石墨烯氣凝膠/碳纖維複合材料之電化學特性與電容去離子淨水技術(capacitive deionization, CDI)之開發,利用冷凍乾燥技術製備之氮原子摻雜石墨烯氣凝膠,石墨烯氣凝膠是一種三維結構材料,有良好的比表面積,其三維的立體結構可以降低層與層的堆疊效應進而提高電吸附容量,且藉由添加Polydopamine(PDA)與Polyethylenimine (PEI)摻雜氮原子提高碳材料電化學性能和表面性能並改善材料本身的疏水性與結構,本研究製備之氮原子摻雜(N-dope)石墨烯氣凝膠通過掃描式電子顯微鏡和X射線光電子能譜分析樣品的型貌結構及表面特性;另一方面將本研究所製備之氣凝膠複合材料塗佈在以回收複合材料中之碳纖維再製之碳紙作為電極,應用於電容去離子技術,藉由向電極施加低電壓產生正負極,使離子吸附於具相反電性的多孔電極的孔洞中,形成電雙層去除水中的鹽分,利用循環伏安法(cyclic voltammetry, CV)與交流阻抗分析法(Electrochemical impedance spectroscopy, EIS)評估複合材料的電化學性能,並研究不同樣品在電容去除離子過程中的脫鹽性能,結果表明燒結後之氮摻雜石墨烯氣凝膠(Anneal Gp@PEI/PDA)與其他樣品相比擁有較高的比電容特性60.44 F/g與脫鹽性能。


    Capacitive deionization (CDI) is one of promising sea water desalination technology that attract more attention in recent years. In this research, we used carbon fiber nonwoven as substrate and coating with nitrogen-doped (N-dope) graphene aerogel composites. Graphene aerogels which obtain via freeze-drying provide good specific surface area due to its three-dimensional structure. The three-dimensional structure can reduce the layer-to-layer stacking effect and improve the electrical adsorption capacity. To enhance the electrochemical properties and structure stability of graphene aerogels, we introduce polydopamine (PDA) and polyethyleneimine (PEI) as nitrogen source to improve the conductivity, hydrophobicity and structure. The N-dope graphene aerogel prepared in this study that scanned by the scanning method electron microscopy and x-ray photoelectron spectroscopy used to analyze the morphology, structure and surface characteristics of the samples. Moreover, the recycled Carbon Fiber Reinforced Polymer of carbon paper was used as the substrate and coated by N-dope graphene aerogel to act as the electrode in capacitive deionization technology. We apply a low voltage to the electrode to generate positive and negative electrodes, so ions could be adsorbed in the oppositely charged porous electrode. An electric double layer would form, and ions could be removed from the salt solution. We use cyclic voltammetry (CV) and AC impedance analysis (Electrochemical impedance spectroscopy, EIS) to evaluate the electrochemical performance of the material, and study the desalination performance. The results show that the annealed nitrogen-doped graphene aerogel (Anneal Gp@PEI/PDA) has highest specific capacitance characteristics of 60.44 F/g and desalination performance.

    摘要 IV Abstract V 誌謝 VII 圖目錄 X 表目錄 XIII 1 第一章 前言 1 1.1 研究背景 1 1.2 電容去離子技術概述 3 1.2.1 電容去離子技術原理 4 1.2.2 電容去離子裝置發展 7 1.3 電容去離子電極之材料 10 1.3.1 活性碳 11 1.3.2 石墨烯 12 1.3.3 氮摻雜之碳材料 13 1.4 氣凝膠 16 1.4.1 超臨界乾燥法 19 1.4.2 冷凍乾燥法 21 1.5 研究動機與目的 24 2 第二章 實驗 25 2.1 實驗藥品 25 2.2 實驗設備及儀器 26 2.3 實驗流程圖 27 2.4 複合材料氣凝膠製備 28 2.5 電容去離子電極之製備 31 2.6 分析方法 32 2.6.1 場發射掃描式電子顯微鏡(FE-SEM) 32 2.6.2 X射線光電子能譜儀(XPS) 32 2.6.3 電化學分析(CV, EIS) 32 2.6.4 電容去離子性能測試 35 3 第三章 結果與討論 40 3.1 氣凝膠複合材料之形貌分析與結構表徵 40 3.1.1 表面形貌分析(SEM) 40 3.1.2 元素組成分析(EDS) 42 3.1.3 元素鍵結分析(XPS) 43 3.2 接觸角分析(CA) 46 3.3 熱重分析測試(TGA) 48 3.4 電化學性能測試(CV, EIS) 49 3.5 電容去離子性能測試 51 3.5.1 循環測試 53 3.5.2 不同操作電壓之電容去離子測試 54 3.5.3 不同待脫鹽之鹽水 55 3.5.4 動力學模型 57 4 第四章 結論 58 5 參考文獻 59

    (1) Organization, W. H. International decade for action water for life, 2005-2015. Weekly Epidemiological Record= Relevé Épidémiologique Hebdomadaire 2005, 80 (22), 195-200.
    (2) 楊偉甫. 台灣地區水資源利用現況與未來發展問題. 發表於中技社舉辦之用水合理化與新生水水源開發論壇, 臺北市. 取自 http://www. ctci. org. tw/ct. asp 2010.
    (3) Biesheuvel, P.; Porada, S.; Elimelech, M.; Dykstra, J. Tutorial review of reverse osmosis and electrodialysis. Journal of Membrane Science 2022, 120221.
    (4) Dias, J. R.; Fadigas, E. A. F. A. A Reverse Osmosis and Electrodialysis System Simultaneously Powered by Gravitational Potential Energy. In Electrodialysis, IntechOpen, 2020.
    (5) Miller, J. E. Review of water resources and desalination technologies; Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Sandia …, 2003.
    (6) Laxman, K.; Myint, M. T. Z.; Al Abri, M.; Sathe, P.; Dobretsov, S.; Dutta, J. Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes. Desalination 2015, 362, 126-132.
    (7) Suss, M. E.; Porada, S.; Sun, X.; Biesheuvel, P. M.; Yoon, J.; Presser, V. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science 2015, 8 (8), 2296-2319.
    (8) AlMarzooqi, F. A.; Al Ghaferi, A. A.; Saadat, I.; Hilal, N. Application of capacitive deionisation in water desalination: a review. Desalination 2014, 342, 3-15.
    (9) Xu, X.; Liu, Y.; Lu, T.; Sun, Z.; Chua, D. H.; Pan, L. Rational design and fabrication of graphene/carbon nanotubes hybrid sponge for high-performance capacitive deionization. Journal of Materials Chemistry A 2015, 3 (25), 13418-13425.
    (10) Blair, J. W.; Murphy, G. W. Electrochemical demineralization of water with porous electrodes of large surface area. ACS Publications, 1960.
    (11) Johnson, A. M.; VENOLIA, W. The electrosorb process for desalting water. 1970.
    (12) Liu, E.; Lee, L. Y.; Ong, S. L.; Ng, H. Y. Treatment of industrial brine using Capacitive Deionization (CDI) towards zero liquid discharge–Challenges and optimization. Water Research 2020, 183, 116059.
    (13) Helmholtz, H. v. Studien über electrische Grenzschichten. Annalen der Physik 1879, 243 (7), 337-382.
    (14) Gouy, M. Sur la constitution de la charge électrique à la surface d'un électrolyte. J. Phys. Theor. Appl. 1910, 9 (1), 457-468.
    (15) Chapman, D. L. LI. A contribution to the theory of electrocapillarity. The London, Edinburgh, and Dublin philosophical magazine and journal of science 1913, 25 (148), 475-481.
    (16) Zhang, L. L.; Zhao, X. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009, 38 (9), 2520-2531.
    (17) Stern, O. Zur theorie der elektrolytischen doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 1924, 30 (21‐22), 508-516.
    (18) Pilon, L.; Wang, H.; d’Entremont, A. Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors. Journal of the Electrochemical Society 2015, 162 (5), A5158.
    (19) McKague, M.; Fathiannasab, H.; Agnaou, M.; Sadeghi, M. A.; Gostick, J. Extending pore network models to include electrical double layer effects in micropores for studying capacitive deionization. Desalination 2022, 535, 115784.
    (20) Biesheuvel, P.; Bazant, M. Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Physical review E 2010, 81 (3), 031502.
    (21) Li, J.; Ji, B.; Jiang, R.; Zhang, P.; Chen, N.; Zhang, G.; Qu, L. Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization. Carbon 2018, 129, 95-103.
    (22) Farmer, J.; Fix, D.; Mack, G. Capacitive deionization of water: an innovative new process; Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 1995.
    (23) Suss, M. E.; Baumann, T. F.; Bourcier, W. L.; Spadaccini, C. M.; Rose, K. A.; Santiago, J. G.; Stadermann, M. Capacitive desalination with flow-through electrodes. Energy & Environmental Science 2012, 5 (11), 9511-9519.
    (24) Lee, J.-B.; Park, K.-K.; Eum, H.-M.; Lee, C.-W. Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination 2006, 196 (1-3), 125-134.
    (25) Biesheuvel, P.; Zhao, R.; Porada, S.; Van der Wal, A. Theory of membrane capacitive deionization including the effect of the electrode pore space. Journal of colloid and interface science 2011, 360 (1), 239-248.
    (26) Gao, X.; Omosebi, A.; Landon, J.; Liu, K. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy & Environmental Science 2015, 8 (3), 897-909.
    (27) Jeon, S.-i.; Park, H.-r.; Yeo, J.-g.; Yang, S.; Cho, C. H.; Han, M. H.; Kim, D. K. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science 2013, 6 (5), 1471-1475.
    (28) Presser, V.; Dennison, C. R.; Campos, J.; Knehr, K. W.; Kumbur, E. C.; Gogotsi, Y. The electrochemical flow capacitor: A new concept for rapid energy storage and recovery. Advanced energy materials 2012, 2 (7), 895-902.
    (29) Zhang, C.; Ma, J.; Wu, L.; Sun, J.; Wang, L.; Li, T.; Waite, T. D. Flow electrode capacitive deionization (FCDI): recent developments, environmental applications, and future perspectives. Environmental Science & Technology 2021, 55 (8), 4243-4267.
    (30) Lee, J.; Kim, S.; Kim, C.; Yoon, J. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy & Environmental Science 2014, 7 (11), 3683-3689.
    (31) La Mantia, F.; Pasta, M.; Deshazer, H. D.; Logan, B. E.; Cui, Y. Batteries for efficient energy extraction from a water salinity difference. Nano letters 2011, 11 (4), 1810-1813.
    (32) Pasta, M.; Wessells, C. D.; Cui, Y.; La Mantia, F. A desalination battery. Nano letters 2012, 12 (2), 839-843.
    (33) Zou, L.; Morris, G.; Qi, D. Using activated carbon electrode in electrosorptive deionisation of brackish water. Desalination 2008, 225 (1-3), 329-340.
    (34) Hou, C.-H.; Huang, C.-Y. A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination 2013, 314, 124-129.
    (35) Benson, J.; Kovalenko, I.; Boukhalfa, S.; Lashmore, D.; Sanghadasa, M.; Yushin, G. Multifunctional CNT‐polymer composites for ultra‐tough structural supercapacitors and desalination devices. Advanced Materials 2013, 25 (45), 6625-6632.
    (36) Gabelich, C. J.; Tran, T. D.; Suffet, I. M. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environmental science & technology 2002, 36 (13), 3010-3019.
    (37) Wang, H.; Deng, H.; He, Y.; Huang, L.; Wei, D.; Hao, T.; Wang, S.; Jin, L.; Zhang, L. Facile and sustainable synthesis of slit-like microporous N-doped carbon with unexpected electrosorption performance. Chemical Engineering Journal 2020, 396, 125249.
    (38) Asadullah, M.; Kabir, M. S.; Ahmed, M. B.; Razak, N. A.; Rasid, N. S. A.; Aezzira, A. Role of microporosity and surface functionality of activated carbon in methylene blue dye removal from water. Korean Journal of Chemical Engineering 2013, 30, 2228-2234.
    (39) Wang, T.; Le, Q.; Zhang, G.; Zhu, S.; Guan, B.; Zhang, J.; Xing, S.; Zhang, Y. Facile preparation and sulfidation analysis for activated multiporous carbon@ NiCo2S4 nanostructure with enhanced supercapacitive properties. Electrochimica Acta 2016, 211, 627-635.
    (40) Narowska, B.; Kułażyński, M.; Łukaszewicz, M.; Burchacka, E. Use of activated carbons as catalyst supports for biodiesel production. Renewable energy 2019, 135, 176-185.
    (41) Noh, J.; Agarwal, R.; Schwarz, J. Hydrogen storage systems using activated carbon. International journal of hydrogen energy 1987, 12 (10), 693-700.
    (42) Cooper, J. L. ACTIVATED CARBON USED AS ELECTRODES IN ELECTROCHEMICAL DEMINERALIZATION OF SALINE WATER. Ph.D., The University of Oklahoma, United States -- Oklahoma, 1968.
    (43) Hameed, B.; Mahmoud, D.; Ahmad, A. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of hazardous materials 2008, 158 (1), 65-72.
    (44) Gupta, V.; Ali, I.; Saini, V.; Van Gerven, T.; Van der Bruggen, B.; Vandecasteele, C. Removal of dyes from wastewater using bottom ash. Industrial & engineering chemistry research 2005, 44 (10), 3655-3664.
    (45) Shi, H. Activated carbons and double layer capacitance. Electrochimica Acta 1996, 41 (10), 1633-1639.
    (46) Ryoo, M.-W.; Seo, G. Improvement in capacitive deionization function of activated carbon cloth by titania modification. Water Research 2003, 37 (7), 1527-1534.
    (47) Oh, H.-J.; Lee, J.-H.; Ahn, H.-J.; Jeong, Y.; Kim, Y.-J.; Chi, C.-S. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution. Thin Solid Films 2006, 515 (1), 220-225.
    (48) Oda, H.; Nakagawa, Y. Removal of ionic substances from dilute solution using activated carbon electrodes. Carbon 2003, 41 (5), 1037-1047.
    (49) Wang, G.; Qian, B.; Dong, Q.; Yang, J.; Zhao, Z.; Qiu, J. Highly mesoporous activated carbon electrode for capacitive deionization. Separation and Purification Technology 2013, 103, 216-221.
    (50) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.-e.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. science 2004, 306 (5696), 666-669.
    (51) Li, H.; Liang, S.; Li, J.; He, L. The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite. Journal of Materials Chemistry A 2013, 1 (21), 6335-6341.
    (52) Wang, M.; Xu, X.; Tang, J.; Hou, S.; Hossain, M. S. A.; Pan, L.; Yamauchi, Y. High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches. Chemical Communications 2017, 53 (78), 10784-10787.
    (53) Li, H.; Pan, L.; Nie, C.; Liu, Y.; Sun, Z. Reduced graphene oxide and activated carbon composites for capacitive deionization. Journal of Materials Chemistry 2012, 22 (31), 15556.
    (54) Wang, L.; Wang, M.; Huang, Z.-H.; Cui, T.; Gui, X.; Kang, F.; Wang, K.; Wu, D. Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry 2011, 21 (45), 18295-18299.
    (55) Xu, X.; Liu, Y.; Wang, M.; Zhu, C.; Lu, T.; Zhao, R.; Pan, L. Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochimica Acta 2016, 193, 88-95.
    (56) El-Deen, A. G.; Choi, J.-H.; Kim, C. S.; Khalil, K. A.; Almajid, A. A.; Barakat, N. A. TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination 2015, 361, 53-64.
    (57) Gao, T.; Liu, Z.; Li, H. Heteroatom doping modified hierarchical mesoporous carbon derived from ZIF-8 for capacitive deionization with enhanced salt removal rate. Separation and Purification Technology 2020, 231, 115918.
    (58) Zhang, J.; Fang, J.; Han, J.; Yan, T.; Shi, L.; Zhang, D. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization. Journal of Materials Chemistry A 2018, 6 (31), 15245-15252.
    (59) Zhao, X.; Zhang, Q.; Zhang, B.; Chen, C.-M.; Wang, A.; Zhang, T.; Su, D. S. Dual-heteroatom-modified ordered mesoporous carbon: Hydrothermal functionalization, structure, and its electrochemical performance. Journal of Materials Chemistry 2012, 22 (11), 4963-4969.
    (60) Gang, H.; Deng, H.; Yan, L.; Wu, B.; Alhassan, S. I.; Cao, Y.; Wei, D.; Wang, H. Surface redox pseudocapacitance boosting Fe/Fe3C nanoparticles-encapsulated N-doped graphene-like carbon for high-performance capacitive deionization. Journal of Colloid and Interface Science 2023, 638, 252-262.
    (61) Xu, X.; Pan, L.; Liu, Y.; Lu, T.; Sun, Z. Enhanced capacitive deionization performance of graphene by nitrogen doping. Journal of colloid and interface science 2015, 445, 143-150.
    (62) Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science 2013, 6 (10), 2839-2855.
    (63) Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. O2 reduction on graphite and nitrogen-doped graphite: experiment and theory. The Journal of Physical Chemistry B 2006, 110 (4), 1787-1793.
    (64) Wang, H.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. AcS catalysis 2012, 2 (5), 781-794.
    (65) Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. science 2007, 318 (5849), 426-430.
    (66) Liu, W.; Huang, X.; Peng, K.; Xiong, Y.; Zhang, J.; Lu, L.; Liu, J.; Li, S. PDA-PEI copolymerized highly hydrophobic sponge for oil-in-water emulsion separation via oil adsorption and water filtration. Surface and Coatings Technology 2021, 406, 126743.
    (67) Ai, K.; Liu, Y.; Ruan, C.; Lu, L.; Lu, G. Sp2 C‐dominant N‐doped carbon sub‐micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen‐reduction catalysts. Advanced Materials 2013, 25 (7), 998-1003.
    (68) Xu, J.; Du, P.; Bi, W.; Yao, G.; Li, S.; Liu, H. Graphene oxide aerogels co-functionalized with polydopamine and polyethylenimine for the adsorption of anionic dyes and organic solvents. Chemical Engineering Research and Design 2020, 154, 192-202.
    (69) Zheng, P.; Wang, L.; Wang, Q.; Zhang, J. Enhanced capacitive deionization by rGO@ PEI/MoS2 nanocomposites with rich heterostructures. Separation and Purification Technology 2022, 295, 121156.
    (70) Nguyen, H. N.; Nadres, E. T.; Alamani, B. G.; Rodrigues, D. F. Designing polymeric adhesives for antimicrobial materials: poly (ethylene imine) polymer, graphene, graphene oxide and molybdenum trioxide–a biomimetic approach. Journal of Materials Chemistry B 2017, 5 (32), 6616-6628.
    (71) Yang, S.-J.; Zou, L.-Y.; Liu, C.; Zhong, Q.; Ma, Z.-Y.; Yang, J.; Ji, J.; Müller-Buschbaum, P.; Xu, Z.-K. Codeposition of levodopa and polyethyleneimine: reaction mechanism and coating construction. ACS applied materials & interfaces 2020, 12 (48), 54094-54103.
    (72) Li, P.; Ma, X.-H.; Jin, L.; Chen, J. Dopamine-polyethyleneimine co-deposition cellulose filter paper for α-Glucosidase immobilization and enzyme inhibitor screening. Journal of Chromatography B 2021, 1167, 122582.
    (73) Lv, Y.; Yang, S.-J.; Du, Y.; Yang, H.-C.; Xu, Z.-K. Co-deposition kinetics of polydopamine/polyethyleneimine coatings: effects of solution composition and substrate surface. Langmuir 2018, 34 (44), 13123-13131.
    (74) Zhou, S.; Yan, J.; Chen, J.; Yan, H.; Zhang, Y.; Huang, J.; Zhao, G.; Zhang, Q.; Liu, Y. Polydopamine/polyethyleneimine co-crosslinked graphene oxide for the enhanced tribological performance of epoxy resin coatings. Journal of Materials Science & Technology 2023, 136, 13-20.
    (75) Yang, W.-J.; Yuen, A. C. Y.; Li, A.; Lin, B.; Chen, T. B. Y.; Yang, W.; Lu, H.-D.; Yeoh, G. H. Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose 2019, 26, 6449-6476.
    (76) Kistler, S. S. Coherent expanded aerogels and jellies. Nature 1931, 127 (3211), 741-741.
    (77) Hong, P. N.; Minh, D. N.; Van Hung, N.; Minh, P. N.; Khoi, P. H. Carbon nanotube and graphene aerogels—The world’s 3D lightest materials for environment applications: A review. Int. J. Mater. Sci. Appl 2017, 6, 277.
    (78) Pekala, R. W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science 1989, 24 (9), 3221-3227.
    (79) Rai, N.; Chauhan, I. Multifunctional Aerogels: A comprehensive review on types, synthesis and applications of aerogels. Journal of Sol-Gel Science and Technology 2023, 1-13.
    (80) Si, Y.; Wang, X.; Dou, L.; Yu, J.; Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Science advances 2018, 4 (4), eaas8925.
    (81) Khamidi, M. F.; Glover, C.; Farhan, S.; Puad, N.; Nuruddin, M. Effect of silica aerogel on the thermal conductivity of cement paste for the construction of concrete buildings in sustainable cities. WIT Transactions on The Built Environment 2014, 137, 665-674.
    (82) Lohe, M. R.; Rose, M.; Kaskel, S. Metal–organic framework (MOF) aerogels with high micro-and macroporosity. Chemical communications 2009, (40), 6056-6058.
    (83) Fan, W.; Zhang, X.; Zhang, Y.; Zhang, Y.; Liu, T. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Composites Science and Technology 2019, 173, 47-52.
    (84) Talebi, Z.; Soltani, P.; Habibi, N.; Latifi, F. Silica aerogel/polyester blankets for efficient sound absorption in buildings. Construction and Building Materials 2019, 220, 76-89.
    (85) Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H.; Hu, C.; Jiang, C.; Jiang, L.; Cao, A.; Qu, L. Highly Compression-Tolerant Supercapacitor Based on Polypyrrole-mediated Graphene Foam Electrodes. Advanced Materials 2013, 25 (4), 591-595.
    (86) Wang, S.; Ning, H.; Hu, N.; Huang, K.; Weng, S.; Wu, X.; Wu, L.; Liu, J. Preparation and characterization of graphene oxide/silk fibroin hybrid aerogel for dye and heavy metal adsorption. Composites Part B: Engineering 2019, 163, 716-722.
    (87) Dervin, S.; Pillai, S. C. An introduction to sol-gel processing for aerogels. Sol-gel materials for energy, environment and electronic applications 2017, 1-22.
    (88) Zuo, L.; Zhang, Y.; Zhang, L.; Miao, Y.-E.; Fan, W.; Liu, T. Polymer/carbon-based hybrid aerogels: preparation, properties and applications. Materials 2015, 8 (10), 6806-6848.
    (89) El-Naggar, M. E.; Othman, S. I.; Allam, A. A.; Morsy, O. M. Synthesis, drying process and medical application of polysaccharide-based aerogels. International journal of biological macromolecules 2020, 145, 1115-1128.
    (90) Şahin, İ.; Özbakır, Y.; İnönü, Z.; Ulker, Z.; Erkey, C. Kinetics of supercritical drying of gels. Gels 2017, 4 (1), 3.
    (91) Wang, Y.; Su, Y.; Wang, W.; Fang, Y.; Riffat, S. B.; Jiang, F. The advances of polysaccharide-based aerogels: Preparation and potential application. Carbohydrate polymers 2019, 226, 115242.
    (92) Liu, S.; Yao, F.; Oderinde, O.; Zhang, Z.; Fu, G. Green synthesis of oriented xanthan gum–graphene oxide hybrid aerogels for water purification. Carbohydrate polymers 2017, 174, 392-399.
    (93) Li, W.; Lu, K.; Walz, J. Freeze casting of porous materials: review of critical factors in microstructure evolution. International materials reviews 2012, 57 (1), 37-60.
    (94) Ni, X.; Ke, F.; Xiao, M.; Wu, K.; Kuang, Y.; Corke, H.; Jiang, F. The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels. International journal of biological macromolecules 2016, 92, 1130-1135.
    (95) Pääkkö, M.; Vapaavuori, J.; Silvennoinen, R.; Kosonen, H.; Ankerfors, M.; Lindström, T.; Berglund, L. A.; Ikkala, O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft matter 2008, 4 (12), 2492-2499.
    (96) Han, D.-C.; Zhang, C.-M.; Guan, J.; Gai, L.-H.; Yue, R.-Y.; Liu, L.-N.; Afzal, M. Z.; Song, C.; Wang, S.-G.; Sun, X.-F. High-performance capacitive deionization using nitrogen and phosphorus-doped three-dimensional graphene with tunable pore size. Electrochimica Acta 2020, 336, 135639.
    (97) Gong, C.; Chen, Z.; Geng, W.; Fu, Z.; Chen, C.; Zhang, Y.; Wang, G. Controlled fabrication of nitrogen-doped porous carbon foam with refined hierarchical architectures for desalination via capacitive deionization. Journal of Colloid and Interface Science 2023, 643, 516-527.
    (98) Kumar, R.; Kumar, A.; Singh, R.; Kashyap, R.; Kumar, R.; Kumar, D.; Kumar, M. Selective room temperature ammonia gas detection using 2-amino pyridine functionalized graphene oxide. Materials Science in Semiconductor Processing 2020, 110, 104920.
    (99) Wadi, V. S.; Ibrahim, Y.; Arangadi, A. F.; Kilybay, A.; Mavukkandy, M. O.; Alhseinat, E.; Hasan, S. W. Three‐dimensional graphene/MWCNT-MnO2 nanocomposites for high‐performance capacitive deionization (CDI) application. Journal of Electroanalytical Chemistry 2022, 914, 116318.
    (100) Zheng, Y.; Lu, S.; Xu, W.; He, G.; Cheng, Y.; Yu, T.; Zhang, Y. The fabrication of graphene/polydopamine/nickel foam composite material with excellent electrochemical performance as supercapacitor electrode. Journal of Solid State Chemistry 2018, 258, 401-409.
    (101) Yuan, J.; Zhang, Z.; Yang, M.; Guo, F.; Men, X.; Liu, W. Carbon nanotubes coated hybrid-fabric composites with enhanced mechanical and thermal properties for tribological applications. Composites Part A: Applied Science and Manufacturing 2017, 102, 243-252.
    (102) Ponzio, F.; Barthès, J.; Bour, J.; Michel, M.; Bertani, P.; Hemmerlé, J.; d’Ischia, M.; Ball, V. Oxidant control of polydopamine surface chemistry in acids: a mechanism-based entry to superhydrophilic-superoleophobic coatings. Chemistry of Materials 2016, 28 (13), 4697-4705.
    (103) Bai, R.; Yang, F.; Meng, L.; Zhao, Z.; Guo, W.; Cai, C.; Zhang, Y. Polyethylenimine functionalized and scaffolded graphene aerogel and the application in the highly selective separation of thorium from rare earth. Materials & Design 2021, 197, 109195.
    (104) Yeh, C.-L.; Hsi, H.-C.; Li, K.-C.; Hou, C.-H. Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination 2015, 367, 60-68.
    (105) Xu, X.; Pan, L.; Liu, Y.; Lu, T.; Sun, Z.; Chua, D. H. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Scientific reports 2015, 5 (1), 1-9.
    (106) Xu, X.; Sun, Z.; Chua, D. H.; Pan, L. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Scientific reports 2015, 5 (1), 11225.
    (107) Talebi, M.; Ahadian, M. M.; Shahrokhian, S. Binder-free 3D graphene nanostructures on Ni foam substrate for application in capacitive deionization. Diamond and Related Materials 2021, 120, 108612.
    (108) Kong, W.; Duan, X.; Ge, Y.; Liu, H.; Hu, J.; Duan, X. Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination. Nano Research 2016, 9, 2458-2466.

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 2033/08/18 (校外網路)
    全文公開日期 2033/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE