簡易檢索 / 詳目顯示

研究生: 黃楚陽
Chu-Yang Huang
論文名稱: 5.6-GHz 全數位式鎖相迴路頻率合成器
5.6-GHz All Digital PLL Frequency Synthesizer
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 陳筱青
Hsiao-Chin Chen
彭盛裕
Sheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 94
中文關鍵詞: 全數位式鎖相迴路相位誤差補償頻率誤差補償數位控制振盪器
外文關鍵詞: all-digital phase-locked loop, phase error compensation, frequency error compensation, digitally controlled oscillator
相關次數: 點閱:379下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出利用新型相位及頻率誤差補償演算法的全數位式鎖相迴路。首先,我們提出了一個振盪週期對應控制碼呈中解析度的新型數位控制振盪器(DCO)架構,DCO 採用一般常見 LC-tank 架構,在 11 位元之 DCO 控制碼控制下,可提供 2048 個不同的頻率,涵蓋約 5.1175 GHz ~ 6.1248 GHz 之震盪頻率。
    相位誤差補償機制,是利用 DCO 為取樣信號,來計數參考時脈訊號 Fref 與除頻器之回授訊號 Fback 之間的相位差,藉此修正除頻器除數,以抵銷 Fref 和 Fback 間的相位差。先解決鎖相迴路追鎖頻率時的相位誤差累積問題,而其後每個 Fref 週期,頻率誤差補償機制與相位誤差補償機制將輪流運作。
    頻率誤差補償的機制是由相位誤差補償機制拓展出來,同樣利用 DCO 為取樣信號,來計數參考時脈訊號 Fref 與除頻器之回授訊號 Fback 之間的相位差,藉此計算 DCO 控制碼的改變量(∆code),以達到頻率校正之目的。
    相位頻率誤差補償機制應用在全數位式鎖相迴路的追鎖過程,待系統鎖定後再藉由鎖小 DCO 控制碼的改變量,以增進鎖定後頻率的穩定性。
    本論文的晶片是採用 TSMC 0.18 um 1P6M CMOS 製程來實現,除了中解析度的數位控制振盪器、Buffer、除頻器、DTS、PFD 等電路採用 Full-Custom 設計流程實現外,其餘電路由 Cell-Based 設計流程來完成。系統鎖定之頻段範圍為涵蓋5.48 GHz至5.62 GHz共8個頻道,參考時脈為5 MHz。DCO解析度在TT 27℃時平均為 15.7 fs。系統操作功率消耗為 68.02 mW 、晶片面積大約為 1.913 mm2。

    關鍵字:全數位式鎖相迴路、相位誤差補償、頻率誤差補償、數位控制振盪器。


    This thesis presents a phase-frequency error compensation mechanism for an all digital phase-locked lopp(ADPLL). First a novel digital-controlled oscillator(DCO) was designed. Eleven pairs of symmetrical PMOS varactors are connected in parallel in the tank circuit. The DCO’s output frequency range is from 5.1175 GHz ~ 6.1248 GHz.
    The phase error compensation mechanism changes the divisor of the divider to resolve the problem of phase error accumulation by calculating the cycle time difference between the positive edge of the reference clock and the positive edge of the feedback signal from the DCO. After that, The frequency error compensation mechanism is activated to generate the correcting amount of the control-code to fix the frequency error. Next, the phased-frequency error compensation mechanism is used in the acquisition mode of the ADPLL. In the tracking mode, after the system is locked, the DCO control code step is reduced to enhance the frequency stability.
    The proposed ADPLL chip was fabricated in TSMC 0.18um 1P6M CMOS process. The DCO, Buffer, Divider, DTS and PFD were implemented by the full-custom design flow. The other part of the ADPLL is realized by the cell-based design flow. The ADPLL frequency range is from 5.48 GHz to 5.62 GHz and its average resolution is 15.7 fs at TT 27℃. The power consumption is 68.02 mW, and the chip size is around 1.913 mm2.

    Keywords:all-digital phase-locked loop, phase error compensation, frequency error compensation, digitally controlled oscillator.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1 研究動機 1 1-2 論文規劃 4 第二章 鎖相迴路介紹與系統應用 5 2-1 類比式鎖相迴路 5 2-2 電荷幫浦式鎖相迴路 6 2-3 全數位式鎖相迴路7 2-4 系統應用 9 第三章 具相位及頻率誤差補償之數位式鎖相迴路系統架構介紹與模擬 10 3-1 系統架構 10 3-2 數位控制振盪器 13 3-2.1 數位控制振盪器架構 13 3-2.2 後模擬結果 14 3-3 Buffer電路架構 19 3-4 CML Divider 20 3-5 差動轉單端電路 22 3-6 除頻器 23 3-6.1 除頻器架構 23 3-6.2 Dual-Modulus Prescaler 24 3-6.3 Program Counter 27 3-6.4 Swallow Counter Controller 28 3-6.5 Pulse-Swallow Divider 30 3-6.6 後模擬結果 31 3-7 Count_HL 電路 32 3-8 相位頻率偵測器 PFD 36 3-9 相位誤差補償器 PEC 37 3-9.1 相位誤差累積問題 38 3-9.2 相位誤差補償機制 39 3-10 頻率誤差補償器FEC 及 Count_K電路 42 3-10.1 頻率誤差補償機制與參數K 43 3-10.2 細調控制器 45 3-11 系統後模擬結果 49 第四章 晶片佈局與量測 54 4-1 設計流程 54 4-2 晶片佈局規劃 55 4-3 量測環境 56 4-4 量測結果 58 4-4.1 鎖定過程之控制碼量測結果 58 4-4.2 頻譜量測結果 62 4-4.3 相位雜訊量測結果 67 4-4.4 量測結果討論 69 4-5 晶片規格列表與文獻比較 73 第五章 結論與未來展望 75 5-1 結論 75 5-2 未來展望 75 參 考 文 獻 76

    [1]Chia-Tsun Wu, Wen-Chung Shen, Wei Wang, and An-Yeu Wu, “A Two-Cycle Lock-In Time ADPLL Design Based on a Frequency Estimation Algorithm,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 57, no. 6, June 2010.
    [2]T. Watanabe and S. Yamauchi, “An all-digital PLL for frequency multiplication by 4 to 1022 with seven-cycle lock time,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 198–204, Feb. 2003.
    [3]D. Sheng, C.-C. Chung, C.-Y. Lee, “An Ultra-Low-Power and Portable Digitally Controlled Oscillator for SoC Applications,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 54, pp. 954 – 958, 2007.
    [4]P.-L. Chen, C.-C. Chung, and C.-Y. Lee, “A portable digitally controlled oscillator using novel varactors,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 52, pp. 233–237, May 2005.
    [5]D. Sheng, C.-C. Chung, and C.-Y. Lee, “An all-digital phase-locked loop with high-resolution for SoC applications,” IEEE VLSI D.A.T., pp. 207–210, Apr. 2006
    [6]Roland E. Best, Phase Locked Loops: Design, Simulation,and Applications, 3rd Edition. Singapore McGraw-Hill Inc., 1993.
    [7]廖煥森, Low-Power Phase-Locked Loop Design. M.S. Thesis, Tamkung University, 1999
    [8]C.-C. Cheng, The analysis and design of all digital phase-locked loop(ADPLL). National Chiao-Tung University, M.S. Thesis, 2001.
    [9]饒敬國. IEEE 802.11a 技術文件內容簡介 [Online]. http://staffweb.ncnu.edu.tw/will/technology/IEEE%20802.11a.pdf
    [10]Kuan-Chung Lu, Fu-Kang Wang, Tzyy-Sheng Horng, “Ultralow Phase Noise and Wideband CMOS VCO Using Symmetrical Body-Bias PMOS Varactors,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 2, pp. 90-92, Feb. 2013.
    [11]U. Singh and M. M. Green, “High-Frequency CML clock dividers in 0.13-μm CMOS Operating Up to 38 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1658-1661, Aug. 2005.
    [12]J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723-1732, Nov. 1996.
    [13]劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006.
    [14]J. Yuan and C. Svensson, “High-Speed CMOS Circuit Technique,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 1989.
    [15]Yue-Fang Kuo, Ro-Min Weng, “A Dynamic-Logic Frequency Divider for 5-GHz WLAN Frequency Synthesizer,” 17th International Conference Radioelektronika, pp. 1-4, 2007
    [16]Hua Geng, Dewei Xu, and Bin Wu, “A Novel Hardware-Based All-Digital Phase-Locked Loop Applied to Grid-Connected Power Converters,” IEEE Trans. on Industrial Electronics, vol. 58, no. 5, pp. 1737-1745, May 2011.
    [17]Mohammad Hekmat, Farshid Aryanfar, Jason Wei, Vijay Gadde, Reza Navid, “A 25 GHz Fast-Lock Digital LC PLL With Multiphase Output Using a Magnetically-Coupled Loop of Oscillators,” IEEE J. Solid-State Circuits, vol. 50, no. 2, pp. 490-502, Feb. 2015.
    [18]Sigang Ryu, Hwanseok Yeo, Yoontaek Lee, Seuk Son, Jaeha Kim, “A 9.2 GHz Digital Phase-Locked Loop With Peaking-Free Transfer Function,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1773-1784, Aug. 2014.
    [19]Mu-lee Huang, Chung-Chih Hung, “Full-Custom All-Digital Phase Locked Loop For Clock Generation,” VLSI-DAT, pp. 1-4, 2015
    [20]Kinget P., Integrated GHz voltage controlled oscillators, Kluwer Acdemic Publishers, New York, 1999.
    [21]曾福祥, 具新型相位及頻率補償之全數位式鎖相迴路, 碩士論文, 國立台灣科技大學, 2014.
    [22]林嘉俊, 5.5GHz 快速鎖定全數位式鎖相迴路設計, 碩士論文, 國立台灣科技大學, 2017.
    [23]何永祥, 應用於動態調節頻率之電源管理並具低抖動快速鎖定之時脈產生器與時脈誤差修正電路設計, 博士論文, 國立台灣科技大學, 2015

    無法下載圖示 全文公開日期 2023/11/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE