簡易檢索 / 詳目顯示

研究生: 郭娌禎
Li-Chen Kuo
論文名稱: 鈀奈米化學鍍鎳活化液之製備與特性研究
Preparation and Characterization of Palladium Nanoactivator for Electroless Nickel Deposition
指導教授: 顏怡文
Yee-wen Yen
口試委員: 李嘉平
Chia-Pyng Lee
周必泰
Pi-Tai Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 64
中文關鍵詞: 鈀奈米金屬印刷電路板活化液
外文關鍵詞: Palladium nanoparticles, printed circuit board, activator
相關次數: 點閱:318下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中將探討鈀奈米粒子應用在化學鎳鍍浴之動力學與微構造對催化作用與其電化學之分析。線性掃描伏安法(linear sweep voltammetry, LSV)之分析結果證實,當鈀奈米粒子的使用量增加時,化學鍍浴中還原劑氧化反應電流峰也相對增強,此結果說明鈀奈米粒子具有極佳的催化能力,可應用於化學鎳鍍浴。此外,利用混合電位理論法(mixed potential theory, MPT)分析發現,鈀奈米粒子的使用量從2µl增加到5µl時,鎳沉積速率可從6.31×10-2 g/cm2.s 增加至9.11×10-2 g/cm2.s。但將等量奈米活化劑以電化學石英晶體微天平(electrochemical quartz crystal microgravimetry, EQCM)即時監控所測得的實際發生沉積速率,卻較混合電位理論法之理論值快,此結果說明當電位達到平衡時,在混合電位理論中不能忽略氫及磷的沉積有關之陰極電流。另外以場發射掃描式電子顯微鏡(field emission scanning electron microscope, FE-SEM)所獲得之資訊也證實,鎳晶體在以EQCM測量的前導時間後,才會連續沉積,並且所沉積鎳層晶粒的尺寸最窄分佈在大約在沉積時間開始後120秒時觀察到。此外,藉由較高濃度之鈀奈米粒子之催化,發現較高容量的磷沉積層存在於沉積層的微構造中。
    再者,開發高活性之新奈米活化液也是本論文另一個研究項目,在本研究中,利用界面活性劑-硫酸十二酯鈉(sodium n-dodecyl sulfate, SDS)為奈米模板,並藉由加入氫離子來調整模板之靜電排斥力並調節聚合,已成功製備出利用模板自組裝行為之多孔性鈀奈米球,且透過控制加入之鈀鹽的濃度,可將自組裝之鈀奈米球直徑控制約為41.5nm至56.2nm的範圍。利用石英晶體微量天平(quartz crystal microbalance, QCM)與混合電位理論之分析結果證實,多孔性之鈀奈米球具有極佳之活性,可應用作為化學鍍鎳之活化液。另外,比較不同尺寸之鈀奈米球之活性,發現小尺寸之鈀奈米球對次磷酸鈉的氧化活性最大。


    Active colloids responsible for charge transfer and electron transfer in electroless metal bath me investigated in this study. Herein, the electrochemical analysis for the catalytic effect of Pd nanoparticles on deposition kinetic and microstructure in the electroless nickel-phosphorous bath was studied. As supported by linear sweep voltammetry (LSV), the currents for oxidation peaks corresponding to Pd nanoparticles upon increasing amount are measured to be enhanced. The result shows that Pd nanoparticles have excellent catalytic power in electroless nickel-phosphorous depositions (ENpD) bath. In addition, the deposition rate, analyzed by mixed potential theory (MPT), was found to increas from 6.31×10-2 g/cm2.s to 9.11×10-2 g/cm2.s. However, based on the same quantity of nanocatalyst, the deposition rates, which are in-situely monitored by electrochemical quartz crystal microgravimetry (EQCM), are measured to be faster than theoretical value given by deduced from conclude MPT. The results that that the cathodic currents for depositing hydrogen and phosphorous in the mixed potential theory could not be neglected upon reaching the equilibrium potential. As for an additional information, supported by field emission scanning electron microscope (FE-SEM), the continuous growth of nickel crystal was found after the induction time measured by EQCM. The narrowest distribution of nanosize grain was obtained at 120 seconds. In addition, the deposited layer of P with higher content was found to exist in the deposited microstructure catalyzed by the Pd nanoparticles at high concentration.
    Furthermore, mesoporous and self-assembled Pd nanopsheres have been prepared in the organized micellar template, sodium n-dodecyl sulfate (SDS), the electrostatic regulation of which was adjusted by adding H+ ions. The diameter of self-assembled nanospheres can be controlled from ~41.5nm to ~56.2 nm by the concentration of palladium ions added. As supported by the analysis of quartz crystal microgravimetry and mixed potential theory, the mesoporous nanospheres can be successfully used as activators and have the excellent activity for electroless nickel-phosphorous depositions. A comparison of deposition rate with a system of Pd nanospheres, the Pd nanosphere with small size was found to exhibit maximum activity toward oxidation of NaH2PO2, reducing agent of ENpD.

    目 錄 摘 要I ABSTRACTIII 目 錄V 圖目錄VIII 表目錄X 第一章 緒 論1 第二章 背景簡介及文獻回顧3 2-1 化學鍍鎳之工藝3 2-1-1 化學鍍鎳之沿革4 2-1-2 化學鍍鎳原理4 2-1-3 化學鍍鎳的應用6 2-2 化學鍍鎳活化液8 2-2-1 分步活化法8 2-2-2 錫鈀膠體9 2-3 化學鍍鎳特性分析法12 2-3-1 石英晶體微天平(quartz crystal microgravimetry, QCM)12 2-3-2 混合電位理論(mixed-potential theory, MPT)13 2-4 奈米材料技術16 2-4-1奈米材料定義16 2-4-2 奈米材料的特性17 2-4-3 金屬奈米粒子製備方法20 2-4-4 金屬奈米粒子保護劑-界面活性劑23 2-5 研究動機25 第三章 鈀奈米粒子應用在化學鍍鎳的活化作用27 3-1 前言27 3-2 實驗方法28 3-2-1 鈀奈米粒子之製備28 3-2-2 沉積動力學之電化學分析29 3-2-3 化學鍍鎳之微構造分析30 3-3 結果與討論32 3-3-1 沉積動力學33 3-3-2 形態40 3-4 結論46 第四章 自組裝多孔鈀奈米球製備-鎳化學鍍的高效活化液47 4-1 前言47 4-2 實驗方法48 4-2-1 自行組裝之鈀奈米球之特性與配製48 4-2-2 電化學測量分析49 4-3 結果與討論50 4-4 結論58 第五章 總結59 參考資料61 圖目錄 圖1 錫鈀膠體配製流程11 圖2 化學鍍之混合電位理論圖15 圖3 奈米材料製備方式21 圖4 界面活性劑基本結構23 圖5 微胞結構(a)球形結構;(b)雙層球形結構;(c)及(d)為柱狀和層狀結構24 圖6 不同量之鈀奈米粒子應用作為活化粒子分散在石英晶體微天平電極上之場發射之掃描電子顯微鏡分析圖 (A) 2µl; (B) 3µl;(C)4µl;(D)5µl32 圖7 化學鎳浴被不同量之鈀奈米粒子催化之線性掃描伏特陽極電化學分析33 圖8 為不同量之鈀奈米粒子應用作為活化粒子催化化學鍍鎳浴之電化學電流電位曲線圖34 圖9 不同量之鈀奈米粒子應用作為活化粒子催化化學鍍鎳浴之電化學石英晶體微天平法分析圖。A:開放電位圖 B:反應鍍速率圖37 圖10 混合電位法與化學石英震盪天平法分析鈀奈米粒子應用作為活化粒子催化化學鍍鎳之沉積速率結果比較圖38 圖11 混合電位法與化學石英震盪天平法分析之沉積速率比例變化圖39 圖 12 混合電位法與化學石英震盪天平法分析鈀奈米粒子應用作為活化粒子催化化學鍍鎳之混和電位結果比較圖40 圖13 不同量之鈀奈米粒子應用作為活化粒子時之催化化學鍍鎳層在沉積時間15, 33, 120與 200秒時之掃描電子顯微鏡分析圖44 圖14 所製備之自組裝多孔性鈀奈米球之TEM圖 (A) Pd1 (B) Pd2 (C) Pd352 圖15 加入的鈀鹽濃度變化對自組裝鈀奈米球平均粒徑之影響53 圖16 自組裝鈀奈米球之X 射線光電子光譜學54 圖17 石英晶體微天平分析不同鈀奈米球與錫鈀膠體做為活化粒子時對化學鎳動力學變化圖55 圖18 混合電位法分析化學鍍鎳浴在被Pd1、Pd2、Pd3催化之電化學分析圖58 表目錄 表1 化學鍍鎳的用途及目地的7 表2 錫鈀膠體配方9 表3 奈米微粒與表面原子數及比表面積關係18 表4 奈米材料製備物理方法與化學方法之優缺點22 表5 應用線性掃描伏特法、混和電位法與電化學石英晶體微天平法來分析化學鍍鎳之鍍浴組成31 表6 混合電位分析法分析不同量之鈀奈米粒子應用作為活化粒子催化化學鍍鎳之電化學結果表。36 表7 不同量之鈀奈米粒子應用作為活化粒子時之催化化學鍍鎳層之元素繞射X-光譜之分析整理表45 表8 利用石英晶體微天平法與混合電位法分析化學鍍鎳結果整理表56

    1.J. Colaruotolo, D. Tramontana, in: G. O. Mallory, J. B. Hajdu (Ed.), Electroless Plating: Fundamentals and Applications, American Electroplaters and Surface Finishers Society, Orlando (1990) Ch. 8
    2.R. L. Zeller, Corrosion, 50 (1994) 457
    3.T. M. Harris, Q. D. Dang, J. Electrochem. Soc., 140 (1993) 81
    4.M. Bayes, I. Sinitskaya, K. Schell, R. House, Trans. Inst. Met. Finish., 69 (1991) 140
    5.G. F. Cui, N. Li, D. Y. Li, M. Li, J. Electrochem. Soc., 152 (2005) C669
    6.J. F. Hamilton, R. C. Baetzold, Science , 205 (1979) 1213
    7.R. L. Cohen, K. W. West, Chem. Phys. Lett., 16 (1972) 128
    8.H. Graham, R.W. Lindsay, H. J. Read, J. Electrochemical Soc., 112 (1965) 401
    9.W. J. Tomlinson, M. W. Carroll, J. Mater. Sci., 25 (1990) 4972
    10.陳俊翰,以銅離子為化學鍍鎳磷鍍液之穩定劑時其析鍍行為之探討,碩士論文,國立成功大學,中華民國 (2004)
    11.楊聰仁,無電鍍鎳及其應用,國璋出版社 (1987)
    12.G. O. Mallory, J. B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, U.S.A. (1990)
    13.李寧,化學鍍實用技術,化學工業出版社 (2004)
    14.方景禮,電鍍添加劑理論與應用,國防工業出版社 (2006)
    15.M. Froment, E. Queau, J. R. Martin, G. Stremsdoerfer, J. Electrochem. Soc., 142 (1995) 3373
    16.鄭宗記,李昆峰,張憲彰,電化學石英晶體微天平之原理及應用,Chemistry,59 (2001) 219
    17.A. J. Bard, L. R. Faulkner, Electrochemical Methods, John Wiley &Sons, New York (2001)
    18.李建良,化學鍍活化液-鈀金屬奈米粒子,產業奈米技術應用資訊園地,10 (2004) 79
    19.張立德,牟季美,奈米材料和奈米結構,滄海書局 (2002)
    20.蘇品書,超微粒子材料技術,復漢出版社 (1998)
    21.馬振基,奈米材料科技原理與應用,全華科技圖書股份有限公司 (2003)
    22.郭清癸,黃俊傑,牟中原,物理雙月刊,23 (2001) 614
    23.賴炤銘,李錫隆,奈米材料的特殊效應與應用,Chemistry,61 (2003) 585
    24.曹恒光,連大成,淺談微乳液,物理雙月刊,23 (2001) 488
    25.C. L. Lee, C. C. Wan, Y. Y. Wang, Adv. Funct. Mater., 11 (2001) 344
    26.G. O. Mallory, in: G. O. Mallory, J. B. Hajdu (Ed.), Electroless Plating: Fundamentals and Applications, American Electroplaters and Surface Finishers Society, Orlando (1990) Ch. 1
    27.Y. Sverdlov, V. Bogush, H. Einati, Y. Shacham-Diamand, J. Electrochem. Soc., 152 (2005) C631
    28.W. Riedel, Electroless Nickel Plating, ASM International and Finishing Publication LTD., Ohio (1991) Ch. 3
    29.M. Froment, E. Queau, J. R. Martin, G. Stremsdoerfer, J. Electrochem. Soc., 142 (1995) 3373
    30.M. T. Reetz, W. Helbig, S. A. Quaiser, U. Simming, N. Breuer, R.Vogel, Science, 267 (1995) 367
    31.K. Boal, F. Iihan, J. E. DeRouchey, T. Thun-Albrecht, R. P. Russell, V. M. Rotello, Nature, 404 (2000) 746
    32.M. J. Hostetler, S. J. Green, J. J. Stokes, R. W. Murray, J. Am. Chem. Soc., 118 (1996) 4212
    33.R. P. Andres J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, R. G. Osifchin, Science, 273 (1996) 1690
    34.C. P. Collier, R, J. Sakally, J. J. Shiang, S.E. Henrichs, J. R. Heath, Science, 277 (1997) 1978
    35.C. Petit, A. Taleb, M.P. Pileni, Adv. Mater., 10 (1998) 259
    36.Rahman, J. Appl. Polym. Sci., 28 (1983) 1331
    37.J.F. Mulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, J.Chastain, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota, (1992)
    38.M. José-Yacamán, M. Marín-Almazo, J. A. Ascencio, J. Mol. Catal., 173 (2001) 61
    39.J. F. Hamilton, R. C. Baetzold, Science, 205 (1979) 1213

    QR CODE