簡易檢索 / 詳目顯示

研究生: 劉庭睿
Ting-Ruei Liu
論文名稱: NbO2/NbC/GO電催化觸媒之協同作用 應用於高效釩液流電池電極之研究
Synergistic Effects of NbO2/NbC/GO Electrocatalyst as a High Performance Electrode for Vanadium Redox Flow Batteries
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王復民
Fu-Ming Wang
郭俞麟
Yu-Lin Kuo
游進陽
Chin-Yang Yu
王丞浩
Chen-Hao Wang
邱德威
Te-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 111
中文關鍵詞: 釩氧化還原液流電池電催化活性碳熱還原反應電極表面改質
外文關鍵詞: Vanadium redox flow battery, electrocatalytic activity, carbothermal reaction, electrode surface modification
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 釩液流電池(VRFB)為目前十分有潛力的大型儲能系統之一,但其較高的生產成本與較低的能量效率仍限制了其實用性。然而,開發具有低成本與高活性的電催化觸媒或電極材料在釩液流電池的效能提升上至關重要。
    因此,本篇研究中選用低價的氧化鈮金屬和氧化石墨烯為前驅物,利用回流及水熱法,將氧化鈮均勻分散於氧化石墨烯表面,接著於管型高溫爐以450、850及1050 °C的高溫燒結。於1050 °C的燒結溫度,因氧化鈮與氧化石墨烯之間的碳熱還原反應,五氧化二鈮被還原為二氧化鈮,同時在高溫下反應生成碳化鈮。氧化石墨烯之表面氧官能基應在高溫時分解,進而形成還原氧化石墨烯,但此篇研究利用碳熱還原法,使得氧化石墨烯在經過高溫燒結後仍可保留大量表面氧官能基。氧官能基為釩離子氧化還原反應的電化學活性點,在氧化石墨烯表面製造大量氧官能基可以有效提升電化學活性,另外,在五氧化二鈮還原過程中產生大量氧缺陷,可以有效吸附氧官能基,形成活性點,碳化鈮則具有高導電性。
    為了證明NbO2/NbC/GO之協同效應,以多種電化學量測方法分別測量商售二氧化鈮、商售碳化鈮,及氧化石墨烯,NbO2/NbC/GO在所有測試樣品中對VO2+/VO2+及V2+/V3+表現出最佳電化學活性。最後,以釩液流單電池充放電進一步說明,使用NbO2/NbC/GO作為電催化觸媒之電池分別在40和80 mA cm−2 的充放電電流密度下,展現出81.9 % 及76.5 % 的能量效率,相較於未處理之碳氈及經過前處理之碳氈,具有卓越的電催化效果。另外,以80 mA cm−2的電流密度進行100次充放電的穩定性測試後,並未有明顯的效率下降,可得知NbO2/NbC/GO作為電催化觸媒不但具有良好的效果,同時也擁有良好的穩定性。

    關鍵字:釩氧化還原液流電池;電催化活性;碳熱還原反應;電極表面改質


    Vanadium redox flow battery (VRFB) is one of the most promising large-scale energy storage system. However, high production cost and low energy efficiency still limit its practicability. Therefore, the development of low-cost and high-activity electrocatalyst is essential to enhance the performance of VRFB. In this study, low-cost niobium oxide and graphene oxide are used as reactants to synthesis NbO2/NbC/GO. The niobium oxide is uniformly dispersed on the surface of graphene oxide by refluxing and hydrothermal method, followed by annealing the sample with varies temperature ranges of 450, 850 1050 °C in a high temperature tubular furnace. At the annealing temperature of 1050 °C, niobium pentoxide is reduced to niobium dioxide due to the carbothermal reduction reaction between niobium oxide and graphene oxide, and simultaneously reacts at to form niobium carbide. Moreover, the surface oxygen functional groups of graphene oxide will be decomposed at high temperature to form reduced graphene oxide. However, in this study we use carbothermal reduction method to retain the large amount of surface oxygen functional groups on graphene oxide after high temperature annealing, which act as the electrochemical active sites for the vanadium ion redox reactions. In addition, a high content of oxygen vacancies is generated during the reduction of niobium pentoxide, which can effectively adsorb the oxygen functional group to form active sites, and the presence of niobium carbide increases conductivity of the electrocatalyst.
    In order to show the synergistic effects of NbO2/NbC/GO, various electrochemical measurements are performed to compare with commercially available niobium oxide, niobium carbide, and graphene oxide. Among all samples, NbO2/NbC/GO exhibits the best electrochemical activity toward VO2+/VO2+ and V2+/V3+ redox reactions. Finally, the charge-discharge test further demonstrates the battery using NbO2/NbC/GO modified graphite felt (GF) as the electrode exhibits the energy efficiency of 81.9 % and 76.5 % at the current densities of 40 and 80 mA cm−2, respectively. The NbO2/NbC/GO modified GF demonstrates an excellent electrochemical activity compared to untreated and pretreated GF. In addition, after 100 cycles of charge-discharge stability test at a current density of 80 mA cm−2, there is no significant decay in energy efficiency. The NbO2/NbC/GO as an electrocatalyst not only possesses outstanding electrochemical activity but great stability in strong acid electrolyte.
    Keywords: Vanadium redox flow battery; electrocatalytic activity; carbothermal reaction; electrode surface modification

    中文摘要 I Abstract III 誌謝 VI Table of Contents VII List of Figures IX List of Tables XV Chapter 1: Introduction 1 1.1 Development of large-scale system 1 1.2 Overview of VRFB 1 1.3 Mechanisms of VRFB 4 1.4 Side reactions in VRFB 9 1.4.1 Parasitic hydrogen evolution reaction 9 1.4.2 Parasitic oxygen evolution reaction 11 1.4.3 Crossover contamination 13 1.5 Motivation and research purpose 15 Chapter 2: Literature Review 18 2.1 Operating principle of a VRFB 18 2.2 Carbonaceous electrodes modification 24 2.3 Carbon materials decorated electrodes 30 2.4 Metal-derived compound electrocatalysts 39 Chapter 3: Experimental Section 44 3.1 Experimental planning 44 3.2 List of chemicals and instruments 46 3.3 Principle of characterization instruments 48 3.3.1 X-ray diffraction spectrometer (XRD) 48 3.3.2 X-ray photoelectron spectroscopy (XPS) 49 3.3.3 Scanning electron microscope (SEM) 51 3.3.4 Transmission electron microscope (TEM) 52 3.3.5 X-ray adsorption spectroscopy (XAS) 54 3.3.6 Electrochemical analyzer 55 3.4 Procedure of catalyst synthesis 58 3.4.1 Synthesis of Nb3O7(OH) 58 3.4.2 Synthesis of Nb3O7(OH)/rGO and NbO2/NbC/GO 58 3.5 The electrochemical methods 59 Chapter 4: Result and Discussion 62 4.1 Characterizations of catalysts 62 4.2 Electrochemical characterizations of catalysts 76 4.2 Single-cell performances of catalysts 86 Chapter 5: Conclusion 92 Reference 93

    [1] The state of the global Climate in 2018 in: W.M. Organization (Ed.), Geneva, 2018.
    [2] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: A critical review, Progress in Natural Science, 19 (2009) 291-312.
    [3] 台灣電力公司, 再生能源發電概況, 風力發電, 2018.
    [4] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334 (2011) 928-935.
    [5] T.U. Daim, X. Li, J. Kim, S. Simms, Evaluation of energy storage technologies for integration with renewable electricity: Quantifying expert opinions, Environmental Innovation and Societal Transitions, 3 (2012) 29-49.
    [6] Z. Li, G. Weng, Q. Zou, G. Cong, Y.-C. Lu, A high-energy and low-cost polysulfide/iodide redox flow battery, Nano Energy, 30 (2016) 283-292.
    [7] D.M. Kabtamu, G.-Y. Lin, Y.-C. Chang, H.-Y. Chen, H.-C. Huang, N.-Y. Hsu, Y.-S. Chou, H.-J. Wei, C.-H. Wang, The effect of adding Bi3+on the performance of a newly developed iron-copper redox flow battery, RSC Advances, 8 (2018) 8537-8543.
    [8] L. Sanz, J. Palma, E. Garcia-Quismondo, M. Anderson, The effect of chloride ion complexation on reversibility and redox potential of the Cu(II)/Cu(I) couple for use in redox flow batteries, Journal of Power Sources, 224 (2013) 278-284.
    [9] F.-Q. Xue, Y.-L. Wang, W.-H. Wang, X.-D. Wang, Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery, Electrochimica Acta, 53 (2008) 6636-6642.
    [10] G.P. Rajarathnam, M.E. Easton, M. Schneider, A.F. Masters, T. Maschmeyer, A.M. Vassallo, The influence of ionic liquid additives on zinc half-cell electrochemical performance in zinc/bromine flow batteries, RSC Advances, 6 (2016) 27788-27797.
    [11] E. Sum, M. Rychcik, M. Skyllas-Kazacos, INVESTIGATION OF THE V(V)/V(IV) SYSTEM FOR USE IN THE POSITIVE HALF-CELL OF A REDOX BATTERY, Journal of Power Sources, 16 (1985) 85-95.
    [12] J. Choi, W.-K. Park, I.-W. Lee, Application of vanadium redox flow battery to grid connected microgrid energy management, 5th IEEE International Conference on Renewable Energy Research and Applications, ICRERA 2016, November 20, 2016 - November 23, 2016, Institute of Electrical and Electronics Engineers Inc., Birmingham, United kingdom, 2016, pp. 903-906.
    [13] B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery, Nano Letters, 14 (2014) 158-165.
    [14] K.J. Kim, M.-S. Park, Y.-J. Kim, J.H. Kim, S.X. Dou, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries, Journal of Materials Chemistry A, 3 (2015) 16913-16933.
    [15] D.M. Kabtamu, J.-Y. Chen, Y.-C. Chang, C.-H. Wang, Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries, Journal of Power Sources, 341 (2017) 270-279.
    [16] Y. Huang, Q. Deng, X. Wu, S. Wang, N, O Co-doped carbon felt for high-performance all-vanadium redox flow battery, International Journal of Hydrogen Energy, 42 (2017) 7177-7185.
    [17] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery, Carbon, 48 (2010) 3079-3090.
    [18] X. Wu, H. Xu, P. Xu, Y. Shen, L. Lu, J. Shi, J. Fu, H. Zhao, Microwave-treated graphite felt as the positive electrode for all-vanadium redox flow battery, Journal of Power Sources, 263 (2014) 104-109.
    [19] J. Zeng, C. Jiang, Y. Wang, J. Chen, S. Zhu, B. Zhao, R. Wang, Studies on polypyrrole modified nafion membrane for vanadium redox flow battery, Electrochemistry Communications, 10 (2008) 372-375.
    [20] K.J. Kim, Y.-J. Kim, J.-H. Kim, M.-S. Park, The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries, Materials Chemistry and Physics, 131 (2011) 547-553.
    [21] B. Sun, M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment, Electrochimica Acta, 37 (1992) 1253-1260.
    [22] B. Sun, M. Skyllas-Kazacos, Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments, Electrochimica Acta, 37 (1992) 2459-2465.
    [23] F. Rahman, M. Skyllas-Kazacos, Vanadium redox battery: Positive half-cell electrolyte studies, Journal of Power Sources, 189 (2009) 1212-1219.
    [24] J. Hwang, B.M. Kim, J. Moon, A. Mehmood, H.Y. Ha, A highly efficient and stable organic additive for the positive electrolyte in vanadium redox flow batteries: Taurine biomolecules containing -NH2 and -SO3H functional groups, Journal of Materials Chemistry A, 6 (2018) 4695-4705.
    [25] L. Wei, T.S. Zhao, Q. Xu, X.L. Zhou, Z.H. Zhang, In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries, Applied Energy, 190 (2017) 1112-1118.
    [26] A.A. Shah, H. Al-Fetlawi, F.C. Walsh, Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery, Electrochimica Acta, 55 (2010) 1125-1139.
    [27] F. Chen, J. Liu, H. Chen, C. Yan, Study on Hydrogen Evolution Reaction at a Graphite Electrode in the All-Vanadium Redox Flow Battery, 2012.
    [28] H. Liu, Q. Xu, C. Yan, Y. Qiao, Corrosion behavior of a positive graphite electrode in vanadium redox flow battery, Electrochimica Acta, 56 (2011) 8783-8790.
    [29] M. Vijayakumar, M.S. Bhuvaneswari, P. Nachimuthu, B. Schwenzer, S. Kim, Z. Yang, J. Liu, G.L. Graff, S. Thevuthasan, J. Hu, Spectroscopic investigations of the fouling process on Nafion membranes in vanadium redox flow batteries, Journal of Membrane Science, 366 (2011) 325-334.
    [30] T. Sukkar, M. Skyllas-Kazacos, Water transfer behaviour across cation exchange membranes in the vanadium redox battery, Journal of Membrane Science, 222 (2003) 235-247.
    [31] C. Sun, J. Chen, H. Zhang, X. Han, Q. Luo, Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery, Journal of Power Sources, 195 (2010) 890-897.
    [32] B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, Z. Yang, Membrane Development for Vanadium Redox Flow Batteries, ChemSusChem, 4 (2011) 1388-1406.
    [33] Q. Xu, T.S. Zhao, P.K. Leung, Numerical investigations of flow field designs for vanadium redox flow batteries, Applied Energy, 105 (2013) 47-56.
    [34] K.H. Kim, B.G. Kim, D.G. Lee, Development of carbon composite bipolar plate (BP) for vanadium redox flow battery (VRFB), Composite Structures, 109 (2014) 253-259.
    [35] K.J. Kim, Y.-J. Kim, J.-H. Kim, M.-S. Park, The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries, Materials Chemistry and Physics, 131 (2011) 547-553.
    [36] P. Han, Y. Yue, Z. Liu, W. Xu, L. Zhang, H. Xu, S. Dong, G. Cui, Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries, Energy & Environmental Science, 4 (2011) 4710-4717.
    [37] Z. Gonzalez, C. Flox, C. Blanco, M. Granda, J.R. Morante, R. Menendez, R. Santamaria, Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application, Journal of Power Sources, 338 (2017) 155-162.
    [38] L. Cao, M. Skyllas-Kazacos, D.-W. Wang, Modification Based on MoO3as Electrocatalysts for High Power Density Vanadium Redox Flow Batteries, ChemElectroChem, 4 (2017) 1836-1839.
    [39] W. Li, J. Liu, C. Yan, The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2+/VO2+ and V3+/V 2+ redox pairs for an all vanadium redox flow battery, Electrochimica Acta, 79 (2012) 102-108.
    [40] P. Han, H. Wang, Z. Liu, X. Chen, W. Ma, J. Yao, Y. Zhu, G. Cui, Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery, Carbon, 49 (2011) 693-700.
    [41] W. Li, J. Liu, C. Yan, Reduced graphene oxide with tunable C/O ratio and its activity towards vanadium redox pairs for an all vanadium redox flow battery, Carbon, 55 (2013) 313-320.
    [42] P.C. Ghimire, R. Schweiss, G.G. Scherer, N. Wai, T.M. Lim, A. Bhattarai, T.D. Nguyen, Q. Yan, Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries, Journal of Materials Chemistry A, 6 (2018) 6625-6632.
    [43] L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, A stable vanadium redox-flow battery with high energy density for large-scale energy storage, Advanced Energy Materials, 1 (2011) 394-400.
    [44] M. Ulaganathan, V. Aravindan, Q. Yan, S. Madhavi, M. Skyllas-Kazacos, T.M. Lim, Recent Advancements in All-Vanadium Redox Flow Batteries, Advanced Materials Interfaces, 3 (2016) 1500309.
    [45] K.J. Kim, S.-W. Lee, T. Yim, J.-G. Kim, J.W. Choi, J.H. Kim, M.-S. Park, Y.-J. Kim, A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries, Scientific Reports, 4 (2014) 6906.
    [46] K.J. Kim, H.S. Lee, J. Kim, M.-S. Park, J.H. Kim, Y.-J. Kim, M. Skyllas-Kazacos, Superior Electrocatalytic Activity of a Robust Carbon-Felt Electrode with Oxygen-Rich Phosphate Groups for All-Vanadium Redox Flow Batteries, ChemSusChem, DOI 10.1002/cssc.201600106(2016) 1329-1338.
    [47] M. Park, J. Ryu, Y. Kim, J. Cho, Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries, Energy and Environmental Science, 7 (2014) 3727-3735.
    [48] J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu, J. Zhang, Identifying the Active Site in Nitrogen-Doped Graphene for the VO2+/VO2+ Redox Reaction, ACS Nano, 7 (2013) 4764-4773.
    [49] M. Park, Y.-J. Jung, J. Kim, H.I. Lee, J. Cho, Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery, Nano Letters, 13 (2013) 4833-4839.
    [50] W. Li, Z. Zhang, Y. Tang, H. Bian, T.-W. Ng, W. Zhang, C.-S. Lee, Graphene-Nanowall-Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO2+/VO2+ Couple for All Vanadium Redox Flow Battery, Advanced Science, 3 (2016) 1500276.
    [51] S. Mehboob, G. Ali, H.-J. Shin, J. Hwang, S. Abbas, K.Y. Chung, H.Y. Ha, Enhancing the performance of all-vanadium redox flow batteries by decorating carbon felt electrodes with SnO2 nanoparticles, Applied Energy, 229 (2018) 910-921.
    [52] H. Zhou, J. Xi, Z. Li, Z. Zhang, L. Yu, L. Liu, X. Qiu, L. Chen, CeOinf2/inf decorated graphite felt as a high-performance electrode for vanadium redox flow batteries, RSC Advances, 4 (2014) 61912-61918.
    [53] A.W. Bayeh, D.M. Kabtamu, Y.-C. Chang, G.-C. Chen, H.-Y. Chen, G.-Y. Lin, T.-R. Liu, T.H. Wondimu, K.-C. Wang, C.-H. Wang, Ta2O5-Nanoparticle-Modified Graphite Felt As a High-Performance Electrode for a Vanadium Redox Flow Battery, ACS Sustainable Chemistry and Engineering, 6 (2018) 3019-3028.
    [54] H. Zhang, Y. Wang, D. Yang, Y. Li, H. Liu, P. Liu, B.J. Wood, H. Zhao, Directly Hydrothermal Growth of Single Crystal Nb3O7(OH) Nanorod Film for High Performance Dye-Sensitized Solar Cells, Advanced Materials, 24 (2012) 1598-1603.
    [55] W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon, 48 (2010) 1146-1152.
    [56] S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.T. Nguyen, R.S. Ruoff, Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, Chemistry of Materials, 20 (2008) 6592-6594.
    [57] T. McQueen, Q. Xu, E.N. Andersen, H.W. Zandbergen, R.J. Cava, Structures of the reduced niobium oxides Nb12O29 and Nb22O54, Journal of Solid State Chemistry, 180 (2007) 2864-2870.
    [58] R.J. Cava, B. Batlogg, J.J. Krajewski, P. Gammel, H.F. Poulsen, W.F. Peck Jr, L.W. Rupp Jr, Antiferromagnetism and metallic conductivity in Nb12O29, Nature, 350 (1991) 598.
    [59] E. Lim, C. Jo, M.S. Kim, M.-H. Kim, J. Chun, H. Kim, J. Park, K.C. Roh, K. Kang, S. Yoon, J. Lee, High-Performance Sodium-Ion Hybrid Supercapacitor Based on Nb2O5@Carbon Core–Shell Nanoparticles and Reduced Graphene Oxide Nanocomposites, Advanced Functional Materials, 26 (2016) 3711-3719.
    [60] L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng, Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries, Applied Energy, 180 (2016) 386-391.
    [61] F.J. Wong, N. Hong, S. Ramanathan, Orbital splitting and optical conductivity of the insulating state of ${\mathrm{NbO}}_{2}$, Physical Review B, 90 (2014) 115135.
    [62] T. Ohsawa, J. Okubo, T. Suzuki, H. Kumigashira, M. Oshima, T. Hitosugi, An n-Type Transparent Conducting Oxide: Nb12O29, The Journal of Physical Chemistry C, 115 (2011) 16625-16629.
    [63] Y. Nabil, S. Cavaliere, I.A. Harkness, J.D.B. Sharman, D.J. Jones, J. Rozière, Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes, Journal of Power Sources, 363 (2017) 20-26.
    [64] L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, D. Long, Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors, Scientific Reports, 6 (2016) 21177.
    [65] Y.-C. Chang, J.-Y. Chen, D.M. Kabtamu, G.-Y. Lin, N.-Y. Hsu, Y.-S. Chou, H.-J. Wei, C.-H. Wang, High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application, Journal of Power Sources, 364 (2017) 1-8.
    [66] L. Zhang, Z.-G. Shao, X. Wang, H. Yu, S. Liu, B. Yi, The characterization of graphite felt electrode with surface modification for H2/Br2 fuel cell, Journal of Power Sources, 242 (2013) 15-22.
    [67] Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells, Energy & Environmental Science, 7 (2014) 2535-2558.
    [68] X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications, Nanoscale, 5 (2013) 3601-3614.
    [69] M. Li, X. He, Y. Zeng, M. Chen, Z. Zhang, H. Yang, P. Fang, X. Lu, Y. Tong, Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production, Chemical Science, 6 (2015) 6799-6805.
    [70] K. Sasaki, L. Zhang, R.R. Adzic, Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction, Physical Chemistry Chemical Physics, 10 (2008) 159-167.
    [71] D.S. Yang, J.Y. Lee, S.W. Jo, S.J. Yoon, T.H. Kim, Y.T. Hong, Electrocatalytic activity of nitrogen-doped CNT graphite felt hybrid for all-vanadium redox flow batteries, International Journal of Hydrogen Energy, 43 (2018) 1516-1522.
    [72] J. Maruyama, T. Shinagawa, A. Hayashida, Y. Matsuo, H. Nishihara, T. Kyotani, Vanadium-Ion Redox Reactions in a Three-Dimensional Network of Reduced Graphite Oxide, ChemElectroChem, 3 (2016) 650-657.
    [73] Y.-O. Kim, S.-M. Park, Intercalation Mechanism of Lithium Ions into Graphite Layers Studied by Nuclear Magnetic Resonance and Impedance Experiments, Journal of The Electrochemical Society, 148 (2001) A194-A199.

    QR CODE