簡易檢索 / 詳目顯示

研究生: 黃子中
Zih-Jhong Huang
論文名稱: 鈦酸鋰與二氧化鈦奈米線修飾石墨氈應用於全釩液流電池之研究
LTO/TiO2 Nanowire-Decorated on Graphite Felt for Vanadium Redox Flow Battery
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 許寧逸
Ning-Yih Hsu
Daniel Manaye Kabtamu
郭俞麟
Yu-Lin Kuo
王復民
Fu-Ming Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 全釩液流電池儲能系統金屬氧化物修飾電極
外文關鍵詞: Energy storage system, Vanadium redox flow battery, Metal oxide, Decorated electrode
相關次數: 點閱:245下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球綠能的發展,大型儲能系統的需求也隨之提升,全釩液流電池(Vanadium redox flow battery, VRFB)因其擁有許多優點,而成為受到矚目的大型儲能系統之一,全釩液流電池的電極通常使用具有導電性的石墨材料,然而這些石墨材料往往有著導電性不足、電化學活性差等缺點,這些問題將導致全釩液流電池的效能不佳。因此,本研究將作為電極的石墨氈改質,藉由奈米線的鈦酸鋰與二氧化鈦複合物三維修飾石墨氈,直接將觸媒合成於石墨氈纖維的表面,藉此減少觸媒與石墨氈之間的電阻,並藉由三維的奈米線形貌,提升電極與電解液之間的反應面積,進而達到提升全釩液流電池效能的目的。
    為了進一步證明鈦酸鋰與二氧化鈦的複合物修飾的石墨氈的效果,將修飾後的石墨氈電極應用於全釩液流電池的正與負極,並進行不同電流密度的充、放電測試,對於伏特效率而言,經過觸媒修飾的石墨氈電極明顯具有更好的結果,當電流密度提升為200 mA/cm2時,其能量效率可達60.57%,比熱處理石墨氈高出8.63%,且放電電容量也提升5.123倍。在電流密度160 mA/cm2的穩定性測試中,將全釩液流電池進行60次的循環充、放電,整體的效能並沒有明顯的變化,這象徵著經由鈦酸鋰與二氧化鈦複合物所改質的石墨氈電極,不僅僅可以有效提升全釩液流電池的效能,其還展現出可以長時間使用的穩定性。


    With the development of global green energy, the demand for large-scale energy storage systems has also increased. Vanadium redox flow battery (VRFB) is one of the large-scale energy storage systems, has attracted attention because of its several merits. However, the graphite electrode materials employed for VRFB often have shortcomings such as insufficient conductivity and poor electrochemical activity, leading to poor performance of VRFB. To modify the graphite felt electrode, in this study, lithium titanate/titanium dioxide (LTO/TiO2) composite catalyst with the nanowire morphology was directly grown on the surface of the graphite felt fiber. The conductivity of the graphite felt electrode through the 3D nanowire morphology, the reaction area between the electrode and the electrolyte is increased, thereby improving the performance of VRFB.
    In order to further prove the effect of the graphite felt modified by the composite material of LTO/TiO2, the modified graphite felt electrode was applied to the positive and negative electrodes of VRFB, and the charge and discharge tests at different current densities were carried out. In terms of efficiency, the catalyst-modified graphite felt electrode has obviously better results. When the current density is increased to 200 mA/cm2, its energy efficiency can reach 60.57%, which is 8.63% higher than that of the heat-treated graphite felt. In the stability test with a current density of 160 mA/cm2, the VRFB was charged and discharged for 60 cycles, and the overall performance did not change significantly, which means that the composite material of lithium titanate and titanium dioxide not only effectively improve the performance of the VRFB, but also show the stability that can be used for a long time.

    中文摘要 I ABSTRACT III 誌謝 V 目錄 VIII 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1. 前言 1 1.2. 全釩液流電池介紹 5 1.3. 全釩液流電池特性分析 11 1.3.1. 全釩液流電池作為大規模儲能系統之優勢 11 1.3.2. 全釩液流電池之缺點即面臨的挑戰 13 1.3.3. 釩離子之反應機制 14 1.4. 研究動機與目的 17 第二章 文獻回顧 19 2.1. 石墨氈電極改質 19 2.2. 二氧化鈦 26 2.3. 鈦酸鋰 28 第三章 實驗步驟與方法 30 3.1. 實驗規劃 30 3.2. 實驗藥品與材料 31 3.3. 實驗儀器設備 32 3.4. 儀器分析原理 33 3.4.1. X光繞射分析儀(X-ray diffraction Spectrometer, XRD) 33 3.4.2. 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM) 35 3.4.3. 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 36 3.4.4. X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 37 3.4.5. X光吸收光譜(X-ray Absorption Spectroscopy, XAS) 39 3.4.6. 比表面積與孔洞分析儀 (Surface Area and Pore size Analyzer) 44 3.5. 實驗步驟 47 3.6. 電化學測試 49 第四章 結果與討論 51 4.1. 觸媒結構與性能分析 51 4.1.1. XRD晶體結構分析 51 4.1.2. SEM影像分析 52 4.1.3. TEM影像分析 53 4.1.4. BET分析 54 4.1.5. XPS表面分析 56 4.1.6. XAS結構分析 58 4.2. 電化學效能分析 59 4.2.1. 循環伏安法(Cyclic Voltammetry, CV) 59 4.2.2. 電化學阻抗分析(Electrochemical impedance spectroscopy, EIS) 62 4.2.3. 單電池效能分析 64 第五章 結論 69 參考文獻 70

    [1] X. Fan, B. Liu, J. Liu, J. Ding, X. Han, Y. Deng, X. Lv, Y. Xie, B. Chen, W. Hu, Battery technologies for grid-level large-scale electrical energy storage. Transactions of Tianjin University, 26 (2020) 92-103.
    [2] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: A critical review. Progress in natural science, 19 (2009) 291-312.
    [3] 經濟部能源局108/109年度全國電力資源供需報告.
    [4] D. Rastler, Electricity energy storage technology options: a white paper primer on applications, costs and benefits, Electric Power Research Institute, 2010.
    [5] C.J. Rydh, Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. Journal of power sources, 80 (1999) 21-29.
    [6] M. Lopez-Atalaya, G. Codina, J. Perez, J. Vazquez, A. Aldaz, Optimization studies on a Fe/Cr redox flow battery. Journal of power sources, 39 (1992) 147-154.
    [7] S. Suresh, T. Kesavan, Y. Munaiah, I. Arulraj, S. Dheenadayalan, P. Ragupathy, Zinc–bromine hybrid flow battery: effect of zinc utilization and performance characteristics. RSC Advances, 4 (2014) 37947-37953.
    [8] D.M. Kabtamu, G.-Y. Lin, Y.-C. Chang, H.-Y. Chen, H.-C. Huang, N.-Y. Hsu, Y.-S. Chou, H.-J. Wei, C.-H. Wang, The effect of adding Bi 3+ on the performance of a newly developed iron–copper redox flow battery. RSC advances, 8 (2018) 8537-8543.
    [9] E. Sum, M. Rychcik, M. Skyllas-Kazacos, Investigation of the V (V)/V (IV) system for use in the positive half-cell of a redox battery. J. Power Sources;(Switzerland), 16 (1985).
    [10] E. Sum, M. Skyllas-Kazacos, A study of the V (II)/V (III) redox couple for redox flow cell applications. Journal of Power sources, 15 (1985) 179-190.
    [11] M. Guarnieri, P. Mattavelli, G. Petrone, G. Spagnuolo, Vanadium redox flow batteries: Potentials and challenges of an emerging storage technology. IEEE Industrial Electronics Magazine, 10 (2016) 20-31.
    [12] C. Yin, S. Guo, H. Fang, J. Liu, Y. Li, H. Tang, Numerical and experimental studies of stack shunt current for vanadium redox flow battery. Applied Energy, 151 (2015) 237-248.
    [13] D. Lee, S. Ryu, S.-H. Shin, J.-H. Kim, S.-H. Moon, A model study on effects of vanadium ion diffusion through ion exchange membranes in a non-aqueous redox flow battery. Journal of Renewable and Sustainable Energy, 11 (2019) 034701.
    [14] A. Hassan, T. Tzedakis, Enhancement of the electrochemical activity of a commercial graphite felt for vanadium redox flow battery (VRFB), by chemical treatment with acidic solution of K2Cr2O7. Journal of Energy Storage, 26 (2019) 100967.
    [15] K.J. Kim, M.-S. Park, Y.-J. Kim, J.H. Kim, S.X. Dou, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. Journal of materials chemistry a, 3 (2015) 16913-16933.
    [16] M. Gattrell, J. Qian, C. Stewart, P. Graham, B. MacDougall, The electrochemical reduction of VO2+ in acidic solution at high overpotentials. Electrochimica acta, 51 (2005) 395-407.
    [17] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications. Electrochimica Acta, 101 (2013) 27-40.
    [18] X. Qiu, T.A. Nguyen, J.D. Guggenberger, M.L. Crow, A.C. Elmore, A field validated model of a vanadium redox flow battery for microgrids. IEEE Transactions on Smart grid, 5 (2014) 1592-1601.
    [19] J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 hybrid membrane for vanadium redox flow battery. Journal of Power Sources, 166 (2007) 531-536.
    [20] M. Skyllas-Kazacos, M. Kazacos, State of charge monitoring methods for vanadium redox flow battery control. Journal of Power Sources, 196 (2011) 8822-8827.
    [21] 馬振基, 謝曉峰, 江仁吉, 蕭閔謙, 楊士賢, 張立學, 新型儲能電池-全釩液流電池的原理與發展現況. 化學, 70 (2012) 237-246.
    [22] X.Z. Yuan, C. Song, A. Platt, N. Zhao, H. Wang, H. Li, K. Fatih, D. Jang, A review of all‐vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies. International Journal of Energy Research, 43 (2019) 6599-6638.
    [23] G. Oriji, Y. Katayama, T. Miura, Investigation on V (IV)/V (V) species in a vanadium redox flow battery. Electrochimica Acta, 49 (2004) 3091-3095.
    [24] B. Sun, M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment. Electrochimica acta, 37 (1992) 1253-1260.
    [25] B. Sun, M. Skyllas-Kazacos, Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments. Electrochimica Acta, 37 (1992) 2459-2465.
    [26] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery. carbon, 48 (2010) 3079-3090.
    [27] B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, Z. Yang, Membrane development for vanadium redox flow batteries. ChemSusChem, 4 (2011) 1388-1406.
    [28] Q. Xu, T. Zhao, P. Leung, Numerical investigations of flow field designs for vanadium redox flow batteries. Applied energy, 105 (2013) 47-56.
    [29] K.H. Kim, B.G. Kim, Development of carbon composite bipolar plate (BP) for vanadium redox flow battery (VRFB). Composite Structures, 109 (2014) 253-259.
    [30] K.J. Kim, Y.-J. Kim, J.-H. Kim, M.-S. Park, The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Materials Chemistry and Physics, 131 (2011) 547-553.
    [31] L. Cao, M. Skyllas-Kazacos, C. Menictas, J. Noack, A review of electrolyte additives and impurities in vanadium redox flow batteries. Journal of energy chemistry, 27 (2018) 1269-1291.
    [32] A.W. Bayeh, Y.-Y. Ou, Y.-T. Ou, Y.-C. Chang, H.-Y. Chen, K.-C. Wang, Y.-M. Wang, H.-C. Huang, T.-C. Chiang, D.M. Kabtamu, MoO2–graphene nanocomposite as an electrocatalyst for high-performance vanadium redox flow battery. Journal of Energy Storage, 40 (2021) 102795.
    [33] A.W. Bayeh, G.-Y. Lin, Y.-C. Chang, D.M. Kabtamu, G.-C. Chen, H.-Y. Chen, K.-C. Wang, Y.-M. Wang, T.-C. Chiang, H.-C. Huang, Oxygen-Vacancy-rich cubic CeO2 nanowires as catalysts for vanadium redox flow batteries. ACS Sustainable Chemistry & Engineering, 8 (2020) 16757-16765.
    [34] D.M. Kabtamu, J.-Y. Chen, Y.-C. Chang, C.-H. Wang, Electrocatalytic activity of Nb-doped hexagonal WO 3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries. Journal of Materials Chemistry A, 4 (2016) 11472-11480.
    [35] A.W. Bayeh, D.M. Kabtamu, Y.-C. Chang, G.-C. Chen, H.-Y. Chen, T.-R. Liu, T.H. Wondimu, K.-C. Wang, C.-H. Wang, Hydrogen-treated defect-rich W18O49 nanowire-modified graphite felt as high-performance electrode for vanadium redox flow battery. ACS Applied Energy Materials, 2 (2019) 2541-2551.
    [36] A.W. Bayeh, D.M. Kabtamu, Y.-C. Chang, G.-C. Chen, H.-Y. Chen, G.-Y. Lin, T.-R. Liu, T.H. Wondimu, K.-C. Wang, C.-H. Wang, Synergistic effects of a TiNb 2 O 7–reduced graphene oxide nanocomposite electrocatalyst for high-performance all-vanadium redox flow batteries. Journal of Materials Chemistry A, 6 (2018) 13908-13917.
    [37] C.S. Lewis, Y.R. Li, L. Wang, J. Li, E.A. Stach, K.J. Takeuchi, A.C. Marschilok, E.S. Takeuchi, S.S. Wong, Correlating titania nanostructured morphologies with performance as anode materials for lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 4 (2016) 6299-6312.
    [38] A. Di Blasi, O. Di Blasi, N. Briguglio, A.S. Aricò, D. Sebastián, M. Lázaro, G. Monforte, V. Antonucci, Investigation of several graphite-based electrodes for vanadium redox flow cell. Journal of Power Sources, 227 (2013) 15-23.
    [39] X. Wu, H. Xu, P. Xu, Y. Shen, L. Lu, J. Shi, J. Fu, H. Zhao, Microwave-treated graphite felt as the positive electrode for all-vanadium redox flow battery. Journal of power sources, 263 (2014) 104-109.
    [40] D. Dixon, D. Babu, J. Langner, M. Bruns, L. Pfaffmann, A. Bhaskar, J. Schneider, F. Scheiba, H. Ehrenberg, Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application. Journal of Power Sources, 332 (2016) 240-248.
    [41] D.M. Kabtamu, J.-Y. Chen, Y.-C. Chang, C.-H. Wang, Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries. Journal of Power Sources, 341 (2017) 270-279.
    [42] D. Cheng, G. Cheng, Z. He, L. Dai, L. Wang, Electrocatalytic performance of TiO2 with different phase state towards V2+/V3+ reaction for vanadium redox flow battery. International Journal of Energy Research, 43 (2019) 4473-4482.
    [43] Z. Liu, Y. Huang, X. Wang, Y. Zhang, J. Ding, Y. Guo, Synthesis of Li4Ti5O12/V2O5 nanocomposites for lithium‐ion batteries by one‐pot co‐precipitation method. Journal of Materials Science: Materials in Electronics, 32 (2021) 12134-12138.
    [44] M.M. Rahman, J.Z. Wang, M.F. Hassan, D. Wexler, H.K. Liu, Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12‐TiO2: A nanocomposite anode material for Li‐ion batteries. Advanced Energy Materials, 1 (2011) 212-220.
    [45] S. Zhao, Y. Li, F. Zhang, J. Guo, Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. Journal of Alloys and Compounds, 805 (2019) 873-879.
    [46] R. Pelberg, Concepts in Radiation and Radiation Safety, in: Cardiac CT Angiography Manual, Springer, 2015, pp. 1-17.
    [47] W. Zhang, R. Wang, H. Wang, Z. Lei, High Performance Carbon‐Supported Core@ Shell PdSn@ Pt Electrocatalysts for Oxygen Reduction Reaction. Fuel Cells, 10 (2010) 734-739.
    [48] T.-M. Pan, P. Garu, J.-L. Her, Influence of Ti content on sensing performance of LaTixOy sensing membrane based electrolyte-insulator-semiconductor pH sensor. Materials Chemistry and Physics, 269 (2021) 124774.
    [49] Y. Li, B. Yang, B. Liu, Synthesis of BiVO4 nanoparticles with tunable oxygen vacancy level: The phenomena and mechanism for their enhanced photocatalytic performance. Ceramics International, 47 (2021) 9849-9855.
    [50] Q. Meng, F. Chen, Q. Hao, N. Li, X. Sun, Nb-doped Li4Ti5O12-TiO2 hierarchical microspheres as anode materials for high-performance Li-ion batteries at low temperature. Journal of Alloys and Compounds, 885 (2021) 160842.
    [51] D.-H. Lee, B.-H. Lee, A.K. Sinha, J.-H. Park, M.-S. Kim, J. Park, H. Shin, K.-S. Lee, Y.-E. Sung, T. Hyeon, Engineering titanium dioxide nanostructures for enhanced lithium-ion storage. Journal of the American Chemical Society, 140 (2018) 16676-16684.

    QR CODE