簡易檢索 / 詳目顯示

研究生: 姚啟元
Chi-Yuan Yao
論文名稱: 電磁干擾測試輻射場強估計方法開發-使用實證模型與近場探棒量測結果
Development of Emission Level Estimation in EMI Compliance Tests - Using Empirical Models and Near Field Probing Results
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 吳宗霖
Tzong-Lin Wu
周錫增
Hsi-Tseng Chou
邱政男
Cheng-Nan Chiu
楊成發
Chang-Fa Yang
林丁丙
Ding-Bing Lin
廖文照
Wen-Jiao Liao
侯元昌
Yuan-Chang Hou
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 112
中文關鍵詞: 電磁干擾電路板近場探棒電容耦合輻射放射電波暗室
外文關鍵詞: EMI, printed circuit board, near-field probe, radiation emission, capacitive coupling, anechoic chamber
相關次數: 點閱:172下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於大多數的電機電子產品在銷售前都必須通過電磁相容及電磁干擾的測試,以避免消費者在使用時,造成附近其他使用的電子設備被干擾的問題,目前各國對於電磁干擾大多已採取強制性的要求。
    由於電磁干擾測試需要在實驗室的正式場地(10米開放場地或10米電波暗室)執行,因此往往在產品準備量產前才進行,一旦發現無法符合測試要求時,在產品修改時就面臨很大的困難,也會造成產品上市的延遲與商機的延誤。
    在本論文中,提出一個完整的電磁干擾測試輻射場強評估與預測程序,並設計新型的近場探棒量測工具,可以準確快速地找出產品雜訊較高的區域,同時經由實驗數據的分析,提出對於傳統電場輻射的修正公式,使用實證模型與近場探棒量測結果,電磁干擾輻射場強的量測值與預測值有很好的一致性。
    透過電容探棒對雜訊源的電壓量測,並代入造成電磁干擾輻射的天線長度,可有效的預估產品中連接電纜與電路板走線上產生的最大遠場雜訊輻射量,並與法規中的限制值比較,在產品設計過程及完成階段,就可提早進行電磁干擾的防治與對策。
    在產品測試不符合後,也經由電容探棒近場探棒找出雜訊產生的問題點,並透過修改前後量測的差異,預估修改後的遠場輻射值,可以節省電波暗室來回修改的時間與費用。本論文所提出的方法,對於產品通過電磁干擾的測試,是一個經濟省時且有效的診斷與預估工具。


    A method is applicable for estimating radiated emissions from PCB traces and connecting cables is proposed. Coil-shaped structures are designed to enhance sensitivity and spatial resolution for EMI near-field probes. This design yields a high sensitivity and a good spatial resolution to find the EMI source in the near-field region. This new probe helps practitioners quickly and correctly locate noise emission source areas on printed circuit boards and devices.
    Empirical formulas are derived to predict emission levels in a conventional 10 m semi-anechoic chamber in the 30-1000 MHz range, which is required for EMC/EMI tests in CISPR 32 and EN 55032. The objective of the proposed technique is to facilitate product and component EMI compliance evaluations in the early design stage. Estimations of mock-up and actual circuit boards made with the proposed method were compared with 10 m measurement range results to validate the effectiveness of this approach. Good agreements are observed. This method can be a time-efficient and cost-effective diagnosis tool for products required to pass the EMI compliance test.

    摘要 I Abstract II 致謝 III List of Figures VI List of Tables XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 The EMI Radiated Model 2 1.3 The Procedure for EMI Pre-compliance Evaluation. 7 1.4 Organization 15 Chapter 2 A Coil-Shaped Near-Field Probe Design for EMI Applications 17 2.1 Introduction 17 2.2 Near-field Measurement and Analysis 21 2.3 Probe design 32 2.4 Performance validation 34 2.4.1 Probe Sensitivity 34 2.4.2 Spatial resolution 35 2.4.3 Field strength derivation 36 2.4.4 Measurement with actual boards 40 2.5 Summary 42 Chapter 3 An Estimated Method for Radiated Emissions Using Source Voltages 43 3.1 Introduction 43 3.2 Two Basic Types of EMI Antennas 45 3.3 Near-Field Probe Design for Source Voltage Assessment 46 3.4 Far-field Emission Estimation 51 3.4.1 Formulation of Estimation Equations 51 3.4.2 Empirical Estimated Formulation 56 3.5 Summary 61 Chapter 4 The Prediction of Radiated Emissions from EMI Coupling Models 62 4.1 Introduction 62 4.1.1 Capacitive Coupling 67 4.1.2 InductiveCcoupling 68 4.1.3 Conductive Coupling 68 4.2 Emissions from Capacitively Coupled Traces 69 4.3 EMI Coupling Predicted Model 75 4.4 Summary 82 Chapter 5 The Verification of the Estimated Equations for Real Application 83 5.1 Introduction 83 5.2 Board Level Emission Evaluation 85 5.3 Board Level Emission Evaluation 88 5.3.1 Type A board with IC 74LS04 Source 88 5.3.2 Type B board with IC 74HC04 Source 92 5.3.3 Type C board with IC 74HC04 Source 98 5.4 Summary 100 Chapter 6 Conclusion 102 References 105

    [1] M. Z. M. Jenu and A. M. Sayegh, “Prediction of radiated emissions from high speed printed circuit board traces using dipole antenna,” The Institution of Engineering and Technology, vol. 10, no. 1, pp. 28–37, Aug. 2016.
    [2] F. B. J. Leferink, “Reduction of printed circuit board radiated emission,” in Proc. IEEE Int. Symp. Electromagn. Compat., Austin, TX, Aug. 1997.
    [3] C.-H. Chen, J. Pazos, and P. Davuluri, “Cable radiation from common mode signals and differential mode signals,” in Proc. IEEE Electrical Design of Advanced Packing and Systems. Symp., Taipei, Taiwan, pp. 101–104, Dec. 2012.
    [4] M. Sorensen, T. H. Hubing, and K. Jensen, “Study of the impact of board orientation on radiated emissions due to common-mode currents on attached cables,” in Proc. IEEE Int. Symp. Electromagn. Compat., Ottawa, Canada, pp. 36–40, Jul. 2016.
    [5] L. B. Gravelle and P. F. Wilson, “EMI/EMC in printed circuit boards–a literature review,” IEEE Trans. Electronmagn. Compat., vol. 34, no. 2, pp. 109–116, May 1992.
    [6] D.M. Hockanson, J.L. Drewniak, T.H. Hubing, T.P. Van Doren, F. Sha, and M.J.Wilhelm, “Investigation of fundamental EMI source mechanisms driving common-mode radiation from printed circuit boards with attached cables,” IEEE Trans. Electromagn. Compat., vol.38, no.4, pp.557–566, Nov. 1996.
    [7] C. R. Paul, Introduction to Electromagnetic Compatibility, 2nd ed. Hoboken, NJ, USA: Wiley, 2006.
    [8] D. Baudry, C. Arcambal, A. Louis, B. Mazari, and P. Eudeline, “Applications of the near-field techniques in EMC investigations,” IEEE Trans. Electromagn. Compat., vol. 49, no. 3, pp. 485–493, Aug. 2007.
    [9] Y. Vives-Gilabert, C. Arcambal, A. Louis, F. de Daran, P. Eudeline, and B. Mazari, “Modeling magnetic radiations of electronic circuits using near-field scanning method,” IEEE Trans. Electromagn. Compat., vol. 49, no. 2, pp. 391–400, Aug. 2007.
    [10] H. Weng, D. G. Beetner, and R. E. DuBroff, “Prediction of radiated emissions using near-field measurements,” IEEE Trans. Electromagn. Compat., vol. 53, no. 4, pp. 891–899, Nov. 2011.
    [11] K.-Y. See, N. Fang, L.-B. Wang, W. Soh, T. Svimonishvili, M. Oswal, W.-Y. Chang, and W.-J. Koh, “An empirical approach to develop near-field limit for radiated-emission compliance check,” IEEE Trans. Electromagn. Compat., vol. 56, no. 3, pp. 691–698, Jun. 2014.
    [12] T. K. Sarkar and A. Taaghol, “Near-Field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM,” IEEE Trans. Antennas Propag., vol. 47, no. 3, pp. 566–573, Mar. 1999.
    [13] H. Takita, M. Tanaka, and H. Inoue, “Calibration of magnetic near-field probe and measurement of magnetic field distribution change by conductive placed near the PCB,” IEICE Technical Report, EMCJ2000-39, July 2000.
    [14] M. I. Montrose and E. M. Nakauchi, “Testing for EMC Compliance: Approaches and Techniques”, 1st Ed., Wiley-IEEE Press, 2004.
    [15] D. Baudry, A. Louis, and B. Mazari, “Characterization of the open ended coaxial probe used for near field measurements in EMC applications,” Progress in Electromagnetics Research, vol. 60, pp. 311–333, 2006
    [16] A.Namba, O.Wada, and R.Koga, “Measurement of near-field emission from printed circuit board using miniature E-field probe,” IEICE Technical Report, EMCJ 98-46, Sept. 1998.
    [17] G. Li, K. Itou, Y. Katou, N. Mukai, D. Pommerenke, and J. Fan, “A resonant E-field probe for RFI measurements,” IEEE Trans. Electromagn. Compat., vol. 56, no. 6, pp. 1719–1722, Dec. 2014.
    [18] A. Mariscotti, “A magnetic field probe with MHz bandwidth and 7-decade dynamic range,” IEEE Trans. Instrum. Meas., vol. 58, no. 8, pp. 2643–2652, Aug. 2009.
    [19] A. Boyer, L. Roy, E. Sicard, and B. Tamer, “Cube probe structures for integrated near-field scanner module,” Electronics Letters, vol. 44, no. 11, pp. 667–669, May 2008.
    [20] M. Leone and H. L. Singer, “On the coupling of an external electromagnetic field to a printed circuit board trace”, IEEE Trans. Electromagn. Compat., vol. 41, no. 4, pp.418–424, Nov. 1999.
    [21] H. Shall, Z. Riah, and M. Kadi, “Near-field coupling model of a non-uniform external electromagnetic field to a printed circuit board trace,” in Proc. of 2013 Int. Conference on Electromagnetics in Advanced Applications, Sep. 2013, pp. 1099–1102.
    [22] C. Leseigneur, P. Fernandez-Lopez, C. Arcambal, D. Baudry, and A. Louis, “Near-field coupling model between electronic systems and transmission line,” in Proc. IEEE Int. Symp. Electromagn. Compat., Jul. 2010, pp. 22–27.
    [23] M. Tanaka, C. Takahashi, and H. Inoue, “Measurement of electromagnetic noise radiating from a printed line model driven by a switching device,” IEICE Trans. Commun., vol.E80-B, no.11, pp.1614–1619, Nov. 1997.
    [24] C.A. Balanis ,Advanced Engineering Electromagnetics, John Wiley and Sons Inc 1989.
    [25] S. Kazama, S. Shinohara, and R. Sato, “Estimation of Current and Voltage Distributions by Scanning Coupling Probe,” IEICE Trans. Commun. vol. E83-B, 41, no. 3, pp.418–424, Mar. 2000.
    [26] F. Rachidi, “Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation field,” IEEE Trans. Electromagn. Compat.,vol. 35, no. 3, pp. 404–407, Aug. 1993.
    [27] P. A. Barriere, J. J. Laurin, and Y. Goussard, “Mapping of equivalent currents on high-speed digital printed circuit boards based on near-field measurements,” IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 649–658, Aug. 2009.
    [28] H. Shall, Z. Riah, and M. Kadi, “Prediction of 3D-near field coupling between a toroidal inductor and a transmission line,” in Proc. IEEE Int. Symp. Electromagn. Compat., Aug. 2013, pp. 651–656.
    [29] T. Kasuga and H. Inoue, “A simulation of the electromagnetic noise from printed line by FDTD-method,” IEICE Technical Report, EMD98-85, Jan. 1999.
    [30] T. Kasuga, M. Tanaka, and H. Inoue, “Estimation of Spatial Distribution of Wideband Electromagnetic Noise around a Printed Circuit Board,” IEICE Trans. Commun., vol.E86-B, no.7, pp. 2154-2161, Jul. 2003.
    [31] M. Leone, “Closed-form expressions for the electromagnetic radiation of microstrip signal traces,” IEEE Trans. Electronmagn. Compat., vol. 49, no. 2, pp. 322–328, May 2007.
    [32] B.-C. Tseng, L.-C. Liao, L.-K. Wu, and H.-T. Lung, “Analytical solutions for the radiated emission of parallel microstrip traces,” IEEE Trans. Electronmagn. Compat., vol. 53, no. 3, pp. 842–845, Aug. 2011.
    [33] A. M. Sayegh, M. Z. B. M. Jenu, S. Z. Sapuan, and S. H. Bin Dahlan, “Analytical solutions for maximum differential-mode radiated emissions of microstrip trace,” IEEE Trans. Electronmagn. Compat., vol. 58, no. 5, pp. 1417–1424, Oct. 2016.
    [34] A. G. Chiariello and G. Miano, “An hybrid model for the evaluation of the full-wave far-field radiated emission from PCB traces,” Prog. Electromagn. Res., vol. 101, pp. 125–138, 2010.
    [35] K. Patra, S. Dhar, and B. Gupta, “Analysis of arbitrarily curved microstrip lines for radiated emission,” IEEE Trans. Electronmagn. Compat., vol. 60, no. 6, pp. 572–579, Jun. 2018.
    [36] A. M. Sayegh and M. Z. M. Jenu, “Closed-form expressions for estimating maximum radiated emissions from the traces of a Printed Circuit Board,” in Proc. Asia-Pacific Symp. on Electronmagn. Compat., Taipei, Taiwan, pp. 620–623, May. 25-29, 2015.
    [37] V. Costa, S. Caniggia, and L. Catello, “On the computation of electromagnetic field components from a transmission line: Theory and application,” in Proc. IEEE Int. Symp. Electromagn. Compat., Washington DC, USA, pp. 651–656, 1990.
    [38] D. A. Hill, D. G. Camell, K. H. Cavcey, and G. H. Koepke, “Radiated emissions and immunity of microstrip transmission lines: Theory and reverberation chamber measurements,” IEEE Trans. Electronmagn. Compat., vol. 38, no. 2, pp. 165–172, May 1996.
    [39] B. W.-J. Wong and A. Cantoni, “Radiated emissions and signal integrity of printed circuit board microstrips,” in Proc. IEEE Symp. Electromagn. Compat., Melbourne, Australia, pp. 1–6, 2010.
    [40] G. Cerri, R. De Leo, and V. M. Primiani, “A rigorous model for radiated emission prediction in PCB circuits,” IEEE Trans. Electromagn. Compat., vol. 35, no. 1, pp. 102–109, Feb. 1993.
    [41] D. M. Hockanson, J. L. Drewniak, T. H. Hubing, and T. P. VanDoren, “FDTD modeling of common mode radiation from cables,” IEEE Trans. Electromagn. Compat., vol. 38, pp. 376–387, Aug. 1996.
    [42] C. R. Paul, “A comparison of the contributions of common-mode and differential-mode currents in radiated emissions,” IEEE Trans. Electronmagn. Compat., vol. 31, no. 2, pp. 189–193, May 1989.
    [43] E. Rogard, B. Azanowsky, and M. M. Ney, “Comparison of radiation modeling techniques up to 10 GHz—Application on a microstrip PCB trace,” IEEE Trans. Electronmagn. Compat., vol. 52, no. 2, pp. 479–486, May 2010.
    [44] A.Ramanujan, Z. Riah, A. Louis, and B. Mazari, “Modeling the electromagnetic radiations of passive microwave components using a near-field scanning method,” IEEE Trans. Electromagn. Compat., vol. 52, no. 4, pp.1056–1059, Nov. 2010.
    [45] H. Weng, D. G. Beetner, and R. E. DuBroff, “Prediction of radiated emissions using near-field measurements,” IEEE Trans. Electromagn. Compat., vol. 53, no. 4, pp. 891–899, Nov. 2011.
    [46] G. Gradoni, D. M. Ramapriya, S. C. Creagh, G. Tanner, M. H. Baharuddin, H. Nasser, C. Smartt, and D. W. P. Thomas, “Near-field scanning and propagation of correlated low-frequency radiated emissions,” IEEE Trans. Electronmagn. Compat., vol. 60, no. 6, pp. 2045–2048, Dec. 2018.
    [47] B. Wang, E.-X. Liu, W.-J. Zhao, and C. E. Png, “Reconstruction of equivalent emission sources for PCBs from near-field scanning using a differential evolution algorithm,” IEEE Trans. Electronmagn. Compat., vol. 60, no. 6, pp. 1670–1677, Dec. 2018.
    [48] G. Gradoni, L. R. Arnaut, S. C. Creagh, G. Tanner, M. H. Baharuddin, H. Nasser, C. Smartt, and D. W. P. Thomas, “Wigner-function-based propagation of stochastic field emissions from planar electromagnetic sources,” IEEE Trans. Electronmagn. Compat., vol. 60, no. 3, pp. 580–588, Jun. 2018.
    [49] P. Petre and T. K. Sarkar, “Planar near-field to far-field transformation using an equivalent magnetic current approach,” IEEE Trans. Antennas Propag., vol. 40, no. 11, pp. 1348–1356, Nov. 1992.
    [50] X. Gao, J. Fan, Y. Zhang, H. Kajbaf, and D. Pommerenke, “Far-field prediction using only magnetic near-field scanning for EMI test,” IEEE Trans. Electromagn. Compat., vol. 56, no. 6, pp. 891–899, Nov. 2014.
    [51] H. W. Ott, Electromagnetic Compatibility Engineering. Hoboken, NJ, USA: Wiley, 2009.

    QR CODE