簡易檢索 / 詳目顯示

研究生: 許鈞霖
Jun-Lin Xu
論文名稱: 以硬軟體共同設計的自走車之地標搜索、視覺辨識、建圖及視覺導引
Hardware/Software Co-Design Based Mobile Robot with Landmarks Searching, Visual Recognition, Map Construction, and Visual Navigation
指導教授: 黃志良
Chih-Lyang Hwang
口試委員: 陳金聖
Chin-Sheng Chen
姚嘉瑜
Chia-Yu Yao
施慶隆
Ching-Long Shih
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 62
中文關鍵詞: 硬軟體共同設計
外文關鍵詞: Hardware/Software
相關次數: 點閱:152下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 首先於想要的範圍場景中置放兩個(以上)地標,並且此場景內無障礙物阻擋自走車的運動且無劇烈的光線變化以影響相關影像處理,經由特徵點之萃取、描述、比對三步驟進行地標的辨識。為達到即時的目的,以FPGA硬體進行相關影像演算法(即FDM(Feature Detection and Matching)之計算、馬達PWM驅動訊號及馬達位置解碼。為了達到節省特徵點數量及資源消耗,以Harris Corner Feature Detection (HCFD)法則取代以SIFT(Scale Invariant Feature Transform)方法的特徵點之萃取。緊接著,建立地標之特徵點的描述器(Feature Descriptor),將其特徵向量,儲存到FPGA平台中,以利於真實地標的比對。搜索及辨識所在場景中的可能地標,並估測其於世界座標系統之座標,完成所有於場景中的地標之位置圖(Map Construction)。並以軟體執行較難以達到即時效能或為保持彈性的計算 (即自走車搜索策略、刪除誤判特徵點、馬達PID控制器)。最後,以所建立的地標位置圖進行自走車視覺導引的任務,經由相關的實驗以驗證所建議的方法之可行性及有效性。


    In this thesis, an FPGA-based feature detection and matching (FDM) algorithm is first implemented to accelerate the recognition and description of the features of landmarks. For the localization of mobile robot (MR), some selected landmarks (e.g., extinguisher, garbage can with suitable Chinese characters) are first trained by the proposed FDM algorithm to accomplish their corresponding feature vectors stored in the FPGA platform. These landmarks are unknown distribution in an environment for the localization of MR. After the matching with the pre-trained feature vector of landmarks, the 2D coordinate of the corresponding landmark is estimated and then stored into a map, so that it can be as a reference map with known landmarks for the visual navigation of an MR. Since the location of landmarks is unknown, an on-line searching strategy of MR is designed. For fully development of the proposed platform, the PID control of two motors using kinematics of MR, the removal of unsuitable feature points to improve the accurate localization of landmark, and the searching strategy of specific landmarks are arranged in the NIOS with the software manner. On the other hand, image capturing, processing, extraction of feature points, feature descriptor, and landmark matching are executed by FPGA hardware. Finally, the corresponding experiments are given to validate the effectiveness and practicality of the proposed methodology.

    摘要 目錄 圖目錄 表目錄 第一章 緒論 第二章 系統架構與問題描述 第三章FDM演算法 第四章 FPGA-Based FDM、PWM、Decoder 第五章 自走車搜索策略 第六章 實驗結果與討論 第七章 結果與未來研究

    [1]T. H. S. Li, S. J. Chang, “Fuzzy target tracking control of autonomous mobile robots by using infrared sensors,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 491-501, Aug. 2004.
    [2] D. Bank and T. Kampke, “High resolution ultrasonic environment imaging,” IEEE Trans. Robotics, vol. 23, no. 2, pp. 370-381, Apr. 2007.
    [3] S. J. Kim and B. K. Kim, “Dynamic ultrasonic hybrid localization system for indoor mobile robot,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4562-4573, Oct. 2013.
    [4] S. Han. H. S. Lim and J. M. Lee, “An efficient localizations scheme for a differential-driving mobile robot based on RFID system,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3362-3369, Dec. 2007
    [5] X. Yang, M. Moallem and R.V. Patel, “A layer global-oriented fuzzy motion planning strategy for mobile robot navigation,” IEEE Syst. Man & Cybern., Part B, vol. 35, no. 6, pp. 1214-1224, Dec. 2005.
    [6] A. M. Ladd, K.E. Bekris, A. P. Rudys, D.S. Wallach and L. E. Kavraki, “ On the feasibility of using wireless Ethernet for indoor localization,” IEEE Trans. Robotics & Autom., vol. 20, no. 3, pp. 555-559, Jun. 2004.
    [7] J. G. Davis, R. Sloan, and A. J. Peyton, “The 3-D positioning of wireless sensors in dispersive propagation media,” IEEE Trans. Instrum. Meas., vol. 62, no. 8, pp. 2338-2352, Aug. 2013.
    [8] D. Schleicher, L. M. Bergasa, M. Ocana, R. Barea and M. E. Lopez, “Real-time hierarchical outdoor SLAM based on stereovision and GPS fusion,” IEEE Trans. Intell. Transport. Syst., vol. 10, no. 3, pp. 440-452, Sep. 2009.
    [9] E. Menegatti, A. Pretto, A. Scarpa, and E. Pagello, “Omni-directional vision scan matching for robot localization in dynamic environments,” IEEE Trans. Robotics, vol. 22, no. 3, pp. 523-535, Jun. 2006.
    [10]H. C. Huang and C. C. Tsai, “FPGA implementation of an embedded robust adaptive controller for autonomous omnidirectional mobile platform,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp.1604-1616, May 2009.
    [11] K. C. Chen and W. H. Tsai, “Vision-based autonomous vehicle guidance for indoor security patrolling by a SIFT-based vehicle-localization technique,” IEEE Trans. Vehicle Technol., vol. 59, no. 7, pp. 3261-3275, Sep. 2010.
    [12] F. C. Huang, S. Y. Huang, J. W. Ker and Y. C. Chen, “High-performance SIFT hardware accelerator for real-time image feature extraction,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 3, pp. 340-349, Mar. 2012.
    [13] A. Diosi, S. Šegvi´c, A. Remazeilles and F. Chaumette, “Experimental evaluation of autonomous driving based on visual memory and image-based visual servoing,” IEEE Trans. Intell. Transport. Syst., vol. 12, no. 3, pp. 870-883, Sep. 2011.
    [14] P. Y. Hsiao, C. L. Lu and L. C. Fu, “Multilayered image processing for multiscale Harris corner detection in digital realization,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1799-1805, May 2010.
    [15]Z. Hajduk, B. Trybus and J. Sadolewski,“Architecture of FPGA embedded multiprocessor programmable controller,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 6952-6961, May 2015.
    [16]D. G. Lowe, “Distinctive features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

    QR CODE